Masao Yoshida, Hirosato Takikawa and Kenji Mori*

Department of Chemistry, Science University of Tokyo, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan

Received (in Cambridge, UK) 23rd January 2001, Accepted 1st March 2001 First published as an Advance Article on the web 3rd April 2001

Testudinariols A (1) and B (1') are ichthyotoxic and structurally unusual triterpene alcohols isolated from the skin and the mucus of the marine mollusc *Pleurobrancus testudinarius*. The first synthesis of (+)-1 and (+)-1' was achieved by starting from (R)-glycidol.

Introduction

In 1997, Spinella et al. isolated testudinariol A (1) and its C-10' epimer, testudinariol B (1') (Fig. 1) as metabolites of the marine mollusc *Pleurobrancus testudinarius*.² These compounds are structurally unique triterpene alcohols and thought to be defensive allomones of P. testudinarius, because 1 was ichthyotoxic against Gambusia affinis. The partially cyclized squalene skeleton present in 1 and 1' is biosynthetically unusual, since the general biosynthetic pathway for polycyclic triterpenoid via squalene 2,3-oxide does not provide such a carbon skeleton. Only two similar skeletons have been reported, in the cases of limatulones [2 and 2', defensive metabolites of the limpet Achmeia (Collisella) limatula]³ and naurols (3 and 3', metabolites of the marine sponges with cytotoxicity to murine leukemia cells P388).⁴ All of these natural products are C_2 -symmetric triterpene alcohols or their diastereomers. We became interested in the unique structures of these marine triterpenoids and have studied their synthesis. Up to the present, synthesis of 2, 2'5 and 31 has been accomplished and reported by us. Very recently, we achieved the first synthesis of (+)-1 and reported it as a preliminary communication.⁶ Herein the synthesis of testudinariols A (1) and B (1') will be described in detail.

Results and discussion

Synthetic plan

Scheme 1 shows our synthetic plan for testudinariol A (1). Because a structural feature of target compound 1 is its C_2 -symmetry, 1 can be obtained by dimerization or its equivalent operation of A. The intermediate A may be prepared from B by (Z)-selective installation of the two-carbon appendage. For the stereoselective construction of the cyclopentane portion of B, an intramolecular ene reaction is appropriate employing C as the substrate. The intramolecular oxy-Michael-type cyclization of D has been adopted to prepare the tetrahydropyran ring of C. The intermediate D can be synthesized from F [(R)-glycidol] *via* the known diol E.⁷ This synthetic plan is also applicable to the synthesis of testudinariol B (1').

Synthesis of testudinariol A

The starting (R)-glycidol ($\mathbf{4}$, = \mathbf{F}) was converted to the known diol 5 (= \mathbf{E}) (Scheme 2).⁷ Selective TBDMS protection of the primary hydroxy group of 5 was followed by treatment with 4-methoxybenzyl trichloroacetimidate ⁸ to give **6b** (77% yield, 2 steps). The enantiomeric purity of **6b** was determined by HPLC

Fig. 1 Structures of testudinariols A (1), B (1') and related metabolites.

Table 1 Intramolecular oxy-Michael-type cyclization $(10b\rightarrow11a-d)$

Run	10b <i>E</i> : <i>Z</i>	Base a	Solvent	Temp./°C	Time/h	Yield b (%)	Ratio ^c 11a : 11b : 11cd
1	3:2	NaH	THF	0 to rt	4	98	1:2:3.5
2	4:1	NaH	THF	0 to rt	18	97	1:2:2
3	5:1	Bu'OK	THF	-10 to 4	20	93	1:1:0.8
4	5:1	LiH	MeCN	60	24	93	1:1.3:1.2
5	5:1	Cs ₂ CO ₃	THF	40	24	No reaction	_
6^d	1:10	Bu ['] OK	THF	-10 to 0	2	90	ca. 1:1:1
7^d	1:10	NaH	THF	rt	6	90	ca. 1:2:3

^a One eq. of **10b** and 1.3~1.5 eq. of base were used in all runs except for run 3 (0.1 eq.) and 6 (~0.5 eq.). ^b Isolated yield. ^c Determined by ¹H-NMR analysis. ^d The corresponding Me ester was used as the substrate.

Scheme 1 Synthetic plan for 1.

Scheme 2 Synthesis of testudinariol A (1)—1. Reagents and conditions: (a) TBDMSCl, Et₃N, DMAP, CH₂Cl₂ (85%); (b) 4-methoxybenzyl trichloroacetimidate, TfOH, Et₂O (90%); (c) OsO₄, NMO, Bu'OH, acetone, H₂O (93%); (d) aq. NaIO₄, SiO₂, CH₂Cl₂ (98%); (e) ethyl 2-diethoxyphosphoryl-6-methylhept-5-enoate, Bu'OK, toluene, -20 °C (93%, E: Z=5:1); (f) PPTS, MeOH (99%).

analysis to be 97.6% ee. This ether **6b** was subjected to OsO_4 mediated dihydroxylation and subsequently treated with $NaIO_4$ to furnish **8** (91%, 2 steps). The aldehyde **8** was then employed for the Horner–Wadsworth–Emmons (HWE) reaction with ethyl 2-diethoxyphosphoryl-6-methylhept-5-enoate ⁹ (9) under several different conditions, and the use of Bu'OK in toluene as the base at -20 °C provided the best result, furnishing **10a**

11a DIBAL-H hexane
$$\delta = 1.50$$
 OPMB

 $\delta = 3.28$ (ddd, $J = 10.8$, 6.4, 2.0 Hz)

11b DIBAL-H hexane $\delta = 1.78$ H O OPMB

NOE H (4.6%) $\delta = 3.48$ (dt-like, $J = 11$, 3.0 Hz)

Fig. 2 Stereochemical assignment of 11a and 11b.

in 93% yield (E: Z=5:1). Although these conditions resulted in the best (E)-selectivity, it turned out that (E)-geometry was not important for the diastereoselectivity in the later Michaeltype cyclization. After removal of the TBDMS protective group (99%), the resulting **10b** (= **D**) was exposed to one of the key steps, intramolecular Michael-type cyclization.

Table 1 summarizes the results of our studies on diastereoselective cyclization. Our first attempt to obtain the desired diastereomer 11a as the predominant product under kinetic control was unfortunately problematic. Although a wide range of bases, NaH, LiH, K2CO3, Cs2CO3, TBAF, etc., and Lewis acids, ZnCl₂, Sc(OTf)₃, TiCl₄, etc., were examined under various conditions, appropriate conditions to furnish 11a diastereoselectively could not be established. We then tried to obtain a mixture of all of the possible diastereomers under thermodynamic control. Thus, 10b was treated with Bu'OK (0.1 eq.) in THF at -10 to 4 °C to give, in 93% yield, a mixture of 11a-d (11a:11b:11c:11d=5:5:2:2, as determined by ¹H-NMR analysis). Under these conditions, the geometry of the conjugated double bond did not play any role in determining diastereoselectivity, and the ratio of the products reflected the thermodynamic equilibrium.

Stereochemical assignment of 11a-d was achieved as follows. At first, trans- or cis-2,5-substitution on the tetrahydropyran ring could easily be deduced based on the ¹H-NMR analysis of 11a-d. However, the orientation of the homoprenyl group was difficult to deduce. Therefore, 11a and 11b, whose stereostructures were uncertain at the time, were reduced with DIBAL-H to afford 14a and 14b, respectively. The observed ¹H-NMR data including NOE correlation depicted in Fig. 2 suggested that the stereostructures of 14a and 14b (hence 11a and 11b) were as illustrated therein. In the same manner, the stereostructures of 11c and 11d were also elucidated. Although the desired 11a was not predominant, chromatographic separation of diastereomers was possible, and the undesired three isomers (11b-d) could be recycled to the initial mixture by treatment with Bu'OK at 4 °C. By repeating this process three times, 11a was obtained in 68% overall yield.

The next challenge was the stereoselective construction of the cyclopentane fragment. As mentioned in the synthetic plan, an ene reaction was thought to be appropriate, and the aldehyde

Table 2 Diastereoselective ene reaction $(12\rightarrow13a-c)$

Run	Lewis acid ^a	Solvent	Temp./°C	Time/min	Yield * (%)	Ratio ^c 13a : 13b : 13c
1	Me ₂ AlCl	CH,Cl,	0	30	>95	6:3:1
2	Et, ÄlCl	CH,Cl,	0	60	>95	6:3:1
3	SnCl ₄	CH,Cl,	0	15	Decomp.	_
4	SnCl	CH,Cl,	-78	15	80	3:0:7
5	(PriO),TiCl4	CH,Cl,	-78	60	Decomp.	_

^a 1.0 eq. of Lewis acid was used. ^b Isolated yield. ^c Determined by ¹H-NMR analysis.

Scheme 3 Synthesis of testudinariol A (1)—2. Reagents and conditions: (a) Bu'OK (0.1 eq.), THF, -10 to 4 °C (93% for a mixture of 11a–d); (b) SiO₂ chromatography (overall 68% for 11a); (c) DIBAL-H, toluene, -78 °C (98%); (d) 1.0 eq. Me₂AlCl, CH₂Cl₂, 0 °C (59%).

12 (= C), which was prepared by DIBAL-H reduction of 11a (98%), was submitted to it (Scheme 3). As shown in Table 2, when aldehyde 12 was treated with Me₂AlCl in CH₂Cl₂¹⁰ at 0 °C, the desired 13a (= B) was generated as the major isomer in a moderate selectivity (13a: 13b: 13c = 6:3:1). This selectivity was not so high but acceptable for our synthesis of 1. In addition, the conditions as listed in entry 4^{11} provided 13c as the major isomer, and this reversal of selectivity was exactly what we desired for the synthesis of testudinariol B (1'). Structure elucidation of 13a–c was mainly established by NOE experiments, and ¹H-NMR data of 13a and 13c concerning the cyclopentane portion were in good accord with those reported for natural 1 and 1', respectively.

The remaining tasks were the preparation of the key intermediate A and its dimerization or its equivalent operation, which were realized as follows. The hydroxy group of 13a was protected as TBDMS ether (99%), and the resulting 15a was treated with DDQ ¹² to give **15b** in 97% yield (Scheme 4). Oxidation of 15b with the Dess-Martin periodinane 13 afforded 16 in 94% yield. The ketone 16 was employed for the next (Z)selective HWE reaction. As shown in Table 3, treatment with a chiral phosphonoacetate (S)-17 developed by Fuji and co-workers 14 in the presence of NaHMDS 15 realized the best (Z)-selectivity (E: Z = ca. 1: 5), while other commercially available HWE reagents developed by Still [(CF₃CH₂O)₂P(=O)CH₂-CO₂Me]¹⁶ and Ando [(PhO)₂P(=O)CH₂CO₂Et]¹⁷ were less selective. It was also noteworthy that the reaction with (R)-17 proceeded with the opposite selectivity (E: Z = 16: 1). It was, to the best of our knowledge, the first example in which Fuji's phosphonoacetate (17) afforded the (E)-isomer as major product. The resulting inseparable mixture of (Z)- and (E)-18a was reduced with DIBAL-H and purified by SiO₂ chromatography to give geometrically pure (Z)-18b in 78% yield. The alcohol 18b was then converted to the corresponding bromide **19a** (93%) and sulfone **19b** (87%) in the conventional manner.

The final challenge was "dimerization". We first attempted to

dimerize 19a by a metal mediated homo-coupling of allylic halide,18 and found that the following conditions gave no successful result: Na-naphthalenide in THF at -78 °C; K-naphthalenide in THF at −95 °C; BaI₂, Li-biphenylide in THF at −78 °C, ¹⁸ etc. However, the methodology employed for the synthesis of limatulones,5 "sulfone coupling", could be applied successfully to overcome the difficulty. Accordingly, the carbanion derived from 19b by treatment with KHMDS was alkylated with 19a in the presence of 18-crown-6 at -78 °C to give the coupling product 20a in 84% yield. It was noteworthy that the conventional conditions, Bu'Li in THF-HMPA, did not work at all, and the corresponding chloride (X = Cl) did not react with 19b completely even under our successful conditions. The coupling product 20a was desulfonylated by reduction with Na-Hg to afford **20b**. Although a small amount of inseparable impurity(ies), which was not the (E,Z)-isomer, was found to be present, the final deprotection of TBDMS groups made purification possible to give pure (+)-testudinariol A (1) (47%) yield, 2 steps), $[a]_D^{26} = +13$ (c = 0.17, CHCl₃) {ref. 2 $[a]_D^{25} = +15.2$ $(c = 0.3, CHCl_3)$. Other physical and spectral data of synthetic (+)-1 were in good accord with those reported for the naturally occurring 1. The overall yield was 5.2% based on 5 in 19 steps.

Synthesis of testudinariol B (1')

It was obvious that the synthesis of testudinariol B (1') could be accomplished by just substituting the intermediate 13a by 13c. Thus, the intermediate 13c was converted into 16' in 3 steps (90% yield) (Scheme 5). However, treatment of 16' with (S)-17 in the presence of NaHMDS, the successful combination, gave a roughly 1:1 mixture of (E)- and (Z)-18a'. This unpredictable decrease in (Z)-selectivity led us to examine other (Z)-selective HWE reagents again, but only a slight improvement was observed ($E: Z = ca. \ 4: 6$), when Still's phosphonoacetate 16 was used. The resulting E–Z-mixture of 18a' was reduced and the product was purified to give pure (Z)-18b' (49%, 2 steps).

Table 3 (Z)-Selective Horner–Wadsworth–Emmons reaction ($16\rightarrow18a$)

Run	Reagent ^a	Base	Additive	Solvent	Temp./°C	Time/h	Yield b (%)	18a ° E : Z
1 ^d	A	NaHMDS	_	THF	-40	24	>90	3:2
2	В	KHMDS	18-C-6 ^e	THF	-40	6	>90	1:2
3	В	KHMDS	18-C-6 ^e	Toluene	-40	10	93	1:2
4^d	C	KHMDS	18-C-6 ^e	THF	-40	6	>90	1:1.3
5	(S)- D	NaHMDS	_	THF	-20	24	91	1:5
6	(R)- D	NaHMDs	_	THF	-20	24	94	16:1

^a Reagents: A. (EtO)₂P(O)CH₂CO₂Et, B. (CF₃CH₂O)₂P(O)CH₂CO₂Me (Still), C. (PhO)₂P(O)CH₂CO₂Et (Ando), D. chiral phosphonoacetate (= 17) (Fuji). ^b Isolated yield. ^c Determined by ¹H-NMR analysis. ^d The corresponding Et ester was obtained as the product. ^c 18-crown-6.

Scheme 4 Synthesis of testudinariol A (1)—3. Reagents and conditions: (a) TBDMSOTf, 2,6-lutidine, CH₂Cl₂ (99%); (b) DDQ, aq. CH₂Cl₂ (97%); (c) Dess–Martin periodinane, pyridine, CH₂Cl₂ (94%); (d) (S)-17, NaHMDS, THF, -78 to -20 °C (91%, E:Z=1:5); (e) DIBAL-H, CH₂Cl₂ (78%); (f) Ms₂O, LiBr, DMAP, s-collidine, DMF (93%); (g) PhSO₂Na, DMF (87%); (h) KHMDS, 18-crown-6, THF then 19a (84%); (i) Na–Hg, Na₂HPO₄, MeOH; (j) TBAF, THF (47%, 2 steps).

The remaining steps were fortunately straightforward, and we could accomplish the synthesis of (+)-1' (18%, 4 steps), $[a]_D^{25} = +19 \ (c = 0.16, \text{CHCl}_3) \ \{\text{ref. 2} \ [a]_D^{25} = +15.0 \ (c = 0.05, \text{CHCl}_3) \}$. Other physical and spectral data of synthetic (+)-1' were in good accord with those reported for the naturally occurring 1'. The overall yield was 3.7% based on 5 in 19 steps.

Scheme 5 Synthesis of testudinariol B (1'). Reagents and conditions: (a) TBDMSOTf, 2,6-lutidine, CH₂Cl₂ (98%); (b) DDQ, aq. CH₂Cl₂ (97%); (c) Dess–Martin periodinane, pyridine, CH₂Cl₂ (95%); (d) (CF₃CH₂O)₂P(O)CH₂CO₂Me, KHMDS, 18-crown-6, toluene, -78 to -40 °C (91%, E:Z=4:6); (e) DIBAL-H, CH₂Cl₂ (54%); (f) Ms₂O, LiBr, DMAP, s-collidine, DMF (64%); (g) **19b**, KHMDS, 18-crown-6, THF then **19a**' (78%); (h) Na–Hg, Na₂HPO₄, MeOH; (i) TBAF, THF (36%, 2 steps).

Conclusion

In conclusion, the first synthesis of testudinariols A (1) and B (1'), structurally and biosynthetically unusual triterpene alcohols isolated from the marine mollusc *Pleurobrancus testudinarius*, has been achieved by starting from (R)-glycidol. As a result, the proposed unique structures for 1 and 1' were proved to be correct.

Experimental

Mps are uncorrected. IR spectra were measured on a JASCO A-102 spectrometer or a JASCO FT/IR-460 spectrometer.

1H-NMR spectra were recorded at 90 MHz on a JEOL JNM-EX 90A spectrometer, at 400 MHz on a JEOL JNM-LA400 spectrometer and at 500 MHz on a JEOL JNM-LA500 spec-

trometer. The peak for TMS, or CHCl₃ in CDCl₃ (at δ 7.26) was used as the internal standard. Chemical shifts are reported in ppm on the δ scale and *J*-values are given in Hz. ¹³C-NMR spectra were recorded at 100 MHz on a JEOL JNM-LA400 spectrometer and at 126 MHz on a JEOL JNM-LA500 spectrometer. The peak for CDCl₃ (at δ 77.0) was used as the internal standard. Optical rotations were taken with a JASCO DIP-1000 polarimeter or a JASCO P-1010 polarimeter. [a]_D values are given in 10^{-1} deg cm² g⁻¹. Mass spectra were measured with a JEOL JMS-SX102A spectrometer. Column chromatography was carried out on Merck Kieselgel 60 Art 1.07734 unless otherwise stated. TLC analyses were performed on Merck silica gel plates 60 F-254.

(S)-1-(tert-Butyldimethylsilyloxy)hex-5-en-2-ol 6a

The known (S)-hex-5-ene-1,2-diol (5) was prepared from (R)glycidol (4). To a stirred solution of 5 (8.87 g, 76.4 mmol) in dry CH₂Cl₂ (90 cm³) were added TBDMSCl (12.7 g, 84.3 mmol), NEt₃ (13.8 cm³, 99.0 mmol) and DMAP (930 mg, 7.61 mmol) at room temperature. After having been stirred at room temperature overnight, the reaction mixture was quenched with water and extracted with CH₂Cl₂. The extract was washed with water, saturated aq. NH₄Cl and brine, dried (Na₂SO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give **6a** (15.0 g, 85%) as a colourless oil, $n_{\rm D}^{22}$ 1.4431 (Found: C, 62.26; H, 11.55. $C_{12}H_{26}O_2Si$ requires C, 62.55; H, 11.37%); $[a]_{D}^{23}$ +8.33 (c 1.00 in CHCl₃); v_{max} (film)/cm⁻¹ 3450m (OH), 1640m (C=C), 1255s (Si–CH₃); $\delta_{\rm H}$ (90 MHz; CDCl₃) 0.07 (6H, s, SiMe₂), 0.91 (9H, s, SiBu'), 1.35-1.65 (2H, m, 3-H₂), 2.01–2.38 (2H, m, 4-H₂), 2.40 (1H, d like, J 2.4, OH), 3.26–3.81 (3H, m, 1-H₂ and 2-H), 4.88–5.19 (2H, m, 6-H₂), 5.60–6.08 (1H, m, 5-H).

(S)-6-(tert-Butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)hex1-ene 6b

To a stirred solution of 6a (1.00 g, 4.34 mmol) and 4-methoxybenzyl trichloroacetimidate (1.84 g, 6.51 mmol) in dry Et₂O (20 cm³) was added CF₃SO₃H (3.8 mm³, 43 µmol) at room temperature under Ar. After having been stirred at room temperature for 30 min, the reaction mixture was quenched with saturated aq. NaHCO₃ and extracted with Et₂O. The extract was washed with water, saturated aq. NaHCO₃ and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give recovered 6a (126 mg, 13%) and **6b** (1.19 g, 90% based on consumed **6a**) as a colourless oil, $n_{\rm D}^{23}$ 1.4860 (Found: C, 68.53; H, 9.61. $C_{20}H_{34}O_3Si$ requires C, 68.52; H, 9.78%); $[a]_{D}^{25}$ –22.9 (c 1.00 in CHCl₃); v_{max} (film)/cm⁻¹ 1640w (C=C), 1610m (Ar), 1585w (Ar), 1510s (Ar), 1245s (Si-CH₃); δ_{H} (90 MHz; CDCl₃) 0.06 (6H, s, SiMe₂), 0.91 (9H, s, SiBu'), 1.48-1.76 (2H, m, 4-H₂), 2.00-2.34 (2H, m, 3-H₂), 3.30-3.88 (3H, m, 5-H and 6-H₂), 3.80 (3H, s, OMe), 4.47 (1H, d, J 11.2, Ar-CHH), 4.65 (1H, d, J 11.2, Ar-CHH), 4.85– 5.14 (2H, m, 1-H₂), 5.59-6.06 (1H, m, 2-H), 6.78-6.97 (2H, d like, J 8.8, m-aromatic-H), 7.19-7.37 (2H, d like, J 8.8, o-aromatic-H).

Determination of the enantiomeric purity of 6b

The enantiomeric purity of the synthesized **6b** was estimated by HPLC analysis. HPLC analysis [column, Chiralcel® OD (4.6 mm × 25 cm); solvent, hexane–propan-2-ol = 10000:1; flow rate, 0.5 cm³ min⁻¹; detection at 254 nm]: **6b** $t_{\rm R}$ /min 23.3 [98.8%, (*S*)-**6b**], 27.4 [1.2%, (*R*)-**6b**]. The enantiomeric purity of **6b** was estimated to be 97.6% ee.

(2RS,5S)-6-(*tert*-Butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)hexane-1,2-diol 7

To a stirred solution of **6b** (4.53 g, 12.9 mmol) in *tert*-butyl alcohol (9.0 cm³), acetone (27 cm³) and water (9.0 cm³) were

added N-methylmorpholine N-oxide (50% water; 4.0 cm³, 19.4 mmol) and osmium(viii) oxide (1 g/100 cm³ solution in tertbutyl alcohol; 7.0 cm³, 0.28 mmol) at room temperature. After having been stirred at room temperature for 40 h, the reaction mixture was quenched with sodium sulfite heptahydrate, diluted with water and extracted with EtOAc. The extract was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give 7 (4.59 g, 93%) as a colourless oil, n_D^{23} 1.4970 (Found: C, 62.25; H, 9.29. $C_{20}H_{36}O_5Si$ requires C, $6\overline{2}$.46; H, 9.44%); $[a]_D^{26}$ -24.3 (c 1.04 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 3400s (OH), 1610m (Ar), 1585w (Ar), 1515s (Ar), 1245s (Si–CH₃); $\delta_{\rm H}$ (90 MHz; CDCl₃) 0.06 (6H, s, SiMe₂), 0.90 (9H, s, SiBu'), 1.36–1.82 (4H, m, $3-H_2$ and $4-H_2$), 2.41 (2H, s, $2 \times OH$), 3.30–3.96 (6H, m, 1-H₂, 2-H, 5-H and 6-H₂), 3.80 (3H, s, OMe), 4.52 (1H, d, J 11.3, Ar-CHH), 4.67 (1H, d, J 11.3, Ar-CHH), 6.76–6.98 (2H, d like, J 8.8, m-aromatic-H), 7.15–7.36 (2H, d like, J 8.8, o-aromatic-H).

(S)-5-(tert-Butyldimethylsilyloxy)-4-(4-methoxybenzyloxy)-pentanal 8

To a stirred mixture of SiO₂ (30 g) in CH₂Cl₂ (180 cm³) was added a solution of NaIO₄ (4.92 g, 23.0 mmol) in water (30 cm³) at room temperature. The mixture was stirred at room temperature for 10 min and then treated with a solution of 7 (8.84 g, 23.0 mmol) in CH₂Cl₂ (90 cm³). After having been stirred at room temperature for 6 h, the reaction mixture was filtered through Celite and the Celite was washed with CH₂Cl₂. After the filtrate and the washings were concentrated under reduced pressure, the residue was chromatographed on SiO₂ to give **8** (7.92 g, 98%) as a colourless oil, n_D^{23} 1.4896 (Found: C, 64.82; H, 9.02. $C_{19}H_{32}O_4Si$ requires C, 64.73; H, 9.15%); $[a]_D^{27}$ -35.4 (c 1.03 in CHCl₃); v_{max} (film)/cm⁻¹ 2730w (CHO), 1725s (C=O), 1615m (Ar), 1590w (Ar), 1520s (Ar), 1250s (Si-CH₃); δ_{H} (90 MHz; CDCl₃) 0.03 (6H, s, SiMe₂), 0.90 (9H, s, SiBu'), 1.56–2.10 (2H, m, 3-H₂), 2.49 (2H, dt like, J 7.2 and 1.8, 2-H₂), 3.30–3.88 (3H, m, 4-H and 5-H₂), 3.80 (3H, s, OMe), 4.41 (1H, d, J 11.3, Ar-CHH), 4.61 (1H, d, J 11.3, Ar-CHH), 6.76–7.00 (2H, d like, J 8.8, m-aromatic-H), 7.14–7.39 (2H, d like, J 8.8, o-aromatic-H), 9.71 (1H, t, J 1.8, CHO).

Ethyl (S,E)-7-(tert-butyldimethylsilyloxy)-6-(4-methoxybenzyloxy)-2-(4'-methylpent-3'-enyl)hept-2-enoate 10a

To a stirred solution of ethyl 2-diethoxyphosphoryl-6-methylhept-5-enoate (9) (452 mg, 1.48 mmol) in dry toluene (5.0 cm³) was added Bu'OK (166 mg, 1.48 mmol) at −20 °C under Ar. After the mixture was stirred at -20 °C for 30 min, a solution of 8 (378 mg, 1.07 mmol) in dry toluene (4.0 cm³) was added dropwise. After having been stirred at -20 °C for 5 h, the resulting solution was quenched with saturated aq. NH₄Cl and extracted with EtOAc. The extract was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO2 to give 10a (503 mg, 93%, E: Z = 5: 1 as determined by ¹H-NMR analysis) as a colourless oil, n_D^{24} 1.4924 (Found: C, 69.16; H, 9.58. $C_{29}H_{48}O_5Si$ requires C, 69.00; H, 9.58%); $[a]_D^{26}$ – 22.8 (c 1.02 in CHCl₃); $\nu_{max}(film)/cm^{-1}$ 1710s (C=O), 1645w (C=C), 1615m (Ar), 1585w (Ar), 1520s (Ar), 1250s (Si–CH₃); (E)-10a: $\delta_{\rm H}$ (500 MHz; CDCl₃) 0.06 (6H, s, SiMe₂), 0.90 (9H, s, SiBu^t), 1.29 (3H, t, J 7.1, CO₂CH₂CH₃), 1.51–1.73 (2H, m, 5-H₂), 1.58 (3H, s, $Me-C=C_{cis}$), 1.67 (3H, s, $Me-C=C_{trans}$), 2.07 (2H, m, 2'-H₂), 2.16–2.35 (4H, m, 4-H₂ and 1'-H₂), 3.45 (1H, m, 6-H), 3.57 (1H, dd, J 10.4 and 5.5, 7-H_a), 3.70 (1H, dd, J 10.4 and 5.8, 7-H_b), 3.80 (3H, s, OMe), 4.18 (2H, q, J 7.1, CO₂CH₂CH₃), 4.47 (1H, d, J 11.2, Ar-CHH), 4.63 (1H, d, J 11.2, Ar-CHH), 5.12 (1H, tdd, J 7.4, 1.5 and 1.2, 3'-H), 6.72 (1H, t, J 7.3, 3-H), 6.84 6.88 (2H, d like, J 8.9, m-aromatic-H), 7.23-7.28 (2H, d like, J 8.9, o-aromatic-H); (Z)-**10a**: $\delta_{\rm H}$ (500 MHz; CDCl₃) 0.06 (6H, s, SiMe₂), 0.90 (9H, s, SiBu¹), 1.28 (3H, t, J 7.1, CO₂CH₂CH₃),

1.51–1.73 (2H, m, 5-H₂), 1.58 (3H, s, Me–C=C_{cis}), 1.67 (3H, s, Me–C=C_{trans}), 2.07 (2H, m, 2'-H₂), 2.16–2.35 (3H, m, 4-H_a and 1'-H₂), 2.50 (1H, m, 4-H_b), 3.45 (1H, m, 6-H), 3.57 (1H, dd, J 10.4 and 5.5, 7-H_a), 3.70 (1H, dd, J 10.4 and 5.8, 7-H_b), 3.80 (3H, s, OMe), 4.18 (2H, q, J 7.1, CO₂CH₂CH₃), 4.47 (1H, d, J 11.2, Ar-CHH), 4.63 (1H, d, J 11.2, Ar-CHH), 5.08 (1H, tdd, J 7.4, 1.5 and 1.2, 3'-H), 5.80 (1H, t, J 7.3, 3-H), 6.84–6.88 (2H, d like, J 8.9, M-aromatic-H), 7.23–7.28 (2H, d like, J 8.9, M-aromatic-H).

Ethyl (S,E)-7-hydroxy-6-(4-methoxybenzyloxy)-2-(4'-methylpent-3'-enyl)hept-2-enoate 10b

To a solution of **10a** (2.47 g, 4.89 mmol, E: Z = 5:1) in dry MeOH (26 cm³) was added PPTS (127 mg, 0.511 mmol) at room temperature under Ar. After having been stirred at 40 °C for 14 h, the resulting solution was quenched with saturated aq. NaHCO₃ and extracted with EtOAc. The extract was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give **10b** (1.90 g, 99%, E: Z = 5:1) as a colourless oil, n_D^{15} 1.5156 (Found: C, 70.79; H, 8.87. C₂₃H₃₄O₅ requires C, 70.74; H, 8.78%); $[a]_D^{24}$ –2.15 (c 1.04 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 3470m (OH), 1710s (C=O), 1640w (C=C), 1615m (Ar), 1585w (Ar), 1520s (Ar); (E)-10b: $\delta_{\rm H}$ (90 MHz; CDCl₃) 1.29 (3H, t, J 7.1, $CO_2CH_2CH_3$), 1.44–2.58 (8H, m, 4-H₂, 5-H₂, 1'-H₂ and 2'-H₂), 1.58 (3H, br s, Me-C=C_{cis}), 1.67 (3H, s, Me-C=C_{trans}), 3.33-3.85 (3H, m, 6-H and 7-H₂), 3.81 (3H, s, OMe), 4.19 (2H, q, J 7.1, CO₂CH₂CH₃), 4.52 (2H, br s, Ar-CH₂), 5.12 (1H, m, 3'-H), 6.72 (1H, t, J 7.5, 3-H), 6.78–6.98 (2H, d like, J 8.6, m-aromatic-H), 7.19–7.38 (2H, d like, J 8.6, o-aromatic-H); (Z)-10b: $\delta_{\rm H}$ (90 MHz; CDCl₃) 1.29 (3H, t, J 7.1, CO₂CH₂CH₃), 1.44–2.58 (8H, m, 4-H₂, 5-H₂, 1'-H₂ and 2'-H₂), 1.58 (3H, br s, Me–C= C_{cis}), 1.67 (3H, s, Me-C= C_{trans}), 3.33–3.85 (3H, m, 6-H and 7-H₂), 3.81 (3H, s, OMe), 4.19 (2H, q, J7.1, CO₂CH₂CH₃), 4.52 (2H, br s, Ar-CH₂), 5.12 (1H, m, 3'-H), 5.82 (1H, t, J 7.5, 3-H), 6.78– 6.98 (2H, d like, J 8.6, m-aromatic-H), 7.19-7.38 (2H, d like, J 8.6, o-aromatic-H).

Ethyl (*R*)-2-[(2'*R*,5'*S*)-5'-(4-methoxybenzyloxy)tetrahydropyran-2'-yl]-6-methylhept-5-enoate 11a

To a stirred solution of **10b** (7.02 g, 18.0 mmol, E: Z = 5:1) in dry THF (120 cm³) was added Bu'OK (202 mg, 1.80 mmol) at -10 °C under Ar. After having been stirred at 4 °C for 18 h, the resulting solution was quenched with saturated aq. NH₄Cl and extracted with EtOAc. The extract was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give a mixture of all of the possible diastereomers, 11a-d (6.53 g, 93%, 11a:11b:11c:11d = 5:5:2:2 as determined by ${}^{1}H$ -NMR analysis) as a colourless oil. The diastereomers were rechromatographed on spherical SiO₂ [Silica Gel 60 N (spherical, neutral), 40-50 μm, Kanto Chemical Co., Inc.] to give the desired 11a (2.26 g, 32%) and the undesired isomers **11b–11d** (4.21 g, 60%). 11b–11d were converted to the initial mixture by treatment with Bu'OK (0.1 eq.) at 4 °C for 18 h. By repeating this process three times, 11a (4.80 g, 68%) was obtained as a colourless oil. Analytical samples of 11b-11d were obtained by chromatographic separation of the diastereomers.

Compound **11a**: a colourless oil, $n_{\rm D}^{23}$ 1.5081 (Found: C, 70.75; H, 8.67. ${\rm C_{23}H_{34}O_5}$ requires C, 70.74; H, 8.78%); $[a]_{\rm D}^{24}$ +19.6 (c 1.02 in CHCl₃); $v_{\rm max}({\rm film})/{\rm cm}^{-1}$ 1735s (C=O), 1615m (Ar), 1590w (Ar), 1520s (Ar), 1250m (C-O), 1100m (C-O); $\delta_{\rm H}(500~{\rm MHz};{\rm CDCl_3})$ 1.26 (3H, t, J 7.0, ${\rm CO_2CH_2CH_3})$, 1.30 (1H, m, 3'- ${\rm H_{ax}}$) or 4'- ${\rm H_{ax}}$), 1.37–1.47 (2H, m, 3- ${\rm H_a}$, 4'- ${\rm H_{ax}}$ or 3'- ${\rm H_{ax}}$), 1.53–1.70 (1H, m, 3- ${\rm H_b}$), 1.57 (3H, s, Me–C=C $_{cis}$), 1.67 (3H, s, Me–C=C $_{crons}$), 1.82 (1H, m, 3'- ${\rm H_{eq}}$), 1.93 (2H, m, 4- ${\rm H_2}$), 2.17 (1H, m, 4'- ${\rm H_{eq}}$), 2.38 (1H, ddd, J 12.2, 8.4 and 3.8, 2-H), 3.12 (1H, dd, J 10.7 and 10.4, 6'- ${\rm H_{ax}}$), 3.36–3.46 (2H, m, 2'-H, 5'-H), 3.80 (3H, s, OMe), 4.04 (1H, ddd, J 10.7, 4.7 and 2.3,

6′-H_{eq}), 4.17 (2H, m, CO₂CH₂CH₃), 4.44 (1H, d, J 11.6, Ar-CHH), 4.49 (1H, d, J 11.6, Ar-CHH), 5.05 (1H, tdd, J 5.8, 1.5 and 1.2, 5-H), 6.82–6.89 (2H, d like, J 8.6, m-aromatic-H), 7.19–7.26 (2H, d like, J 8.6, o-aromatic-H); δ _C(100 MHz; CDCl₃) 14.2, 17.6, 25.6, 25.7, 27.9, 28.6, 29.9, 51.1, 55.2, 60.2, 70.4, 70.8, 72.3, 78.5, 113.7, 123.3, 129.1, 130.5, 132.4, 159.1, 174.3.

Compound 11b: a colourless oil, n_D^{23} 1.5028 (Found: C, 70.87; H, 9.02. $C_{23}H_{34}O_5$ requires C, 70.74; H, 8.78%); $[a]_D^{24}$ +5.64 (c 1.01 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 1730s (C=O), 1615m (Ar), 1585w (Ar), 1515s (Ar), 1250m (C-O), 1100m (C-O); $\delta_{\rm H}(400 \text{ MHz; CDCl}_3) 1.26 (3H, t, J 7.1, CO_2CH_2CH_3), 1.34-$ 1.48 (2H, m, 3'- H_{ax} and 4'- H_{ax}), 1.57 (3H, s, Me–C= C_{cis}), 1.61– 1.78 (3H, m, 3- H_2 and 3'- H_{eq}), 1.66 (3H, s, Me-C= C_{trans}), 1.95 (2H, m, 4-H₂), 2.16 (1H, m, 4'-H_{eq}), 2.41 (1H, ddd, J 10.0, 8.1 and 4.2, 2-H), 3.13 (1H, dd, J 11.0 and 10.5, 6'-H_{ax}), 3.33 (1H, ddd, J 10.0, 8.1 and 2.0, 2'-H), 3.40 (1H, m, 5'-H), 3.79 (3H, s, OMe), 4.06 (1H, ddd, J 11.0, 4.6 and 2.2, 6'-H_{eq}), 4.14 (2H, q, J7.1, CO₂CH₂CH₃), 4.44 (1H, d, J11.6, Ar-CHH), 4.50 (1H, d, J 11.5, Ar-CHH), 5.07 (1H, tdd, J 7.2, 5.8 and 1.3, 5-H), 6.83– 6.89 (2H, d like, J 8.6, m-aromatic-H), 7.21-7.26 (2H, d like, J 8.6, o-aromatic-H); $\delta_{\rm C}(100 \text{ MHz}; {\rm CDCl_3})$ 14.2, 17.6, 25.7, 25.9, 28.0, 29.1, 29.8, 50.7, 55.2, 60.3, 70.4, 70.9, 72.5, 77.9, 113.8, 123.5, 129.2, 130.5, 132.2, 159.2, 173.9.

Compound 11c: a colourless oil, n_D^{24} 1.5064 (Found: C, 70.91; H, 9.08. $C_{23}H_{34}O_5$ requires C, 70.74; H, 8.78%); $[a]_D^{26}$ -1.48 (c 1.03 in CHCl₃); $\nu_{\text{max}}(\text{film})/\text{cm}^{-1}$ 1725s (C=O), 1610m (Ar), 1585w (Ar), 1515s (Ar), 1245m (C-O), 1120m (C-O); $\delta_{\text{H}}(400 \text{ MHz}; \text{CDCl}_3)$ 1.26 (3H, t, J 7.0, $\text{CO}_2\text{CH}_2\text{C}H_3$), 1.34–1.42 (1H, m, 4'-H_{ax}), 1.51–2.07 (7H, m, 3-H₂, 4-H₂, 3'-H₂ and 4'-H_{eq}), 1.57 (3H, s, Me-C=C_{cis}), 1.66 (3H, s, Me-C=C_{trans}), 2.52 (1H, ddd, J 10.6, 8.6 and 3.2, 2-H), 3.37 (1H, br s, 5'-H), 3.41 (1H, m, 2'-H), 3.46 (1H, dd, J 12.0 and 1.6, 6'-H_{ax}), 3.80 (3H, s, OMe), 4.04 (1H, br d, J 12.0, 6'-H_{eq}), 4.15 (2H, m, $CO_2CH_2CH_3$), 4.49 (2H, s, Ar-CH₂), 5.08 (1H, t like, J 7.0, 5-H), 6.83–6.89 (2H, d like, J 8.4, m-aromatic-H), 7.24–7.30 (2H, d like, J 8.4, o-aromatic-H); $\delta_C(100 \text{ MHz}; \text{CDCl}_3)$ 14.3, 17.6, 24.7, 25.7, 25.8, 26.7, 29.0, 51.2, 55.2, 60.2, 69.5, 69.8, 70.0, 77.9, 113.7, 123.8, 129.1, 130.7, 131.9, 159.0, 174.2.

Compound 11d: a colourless oil, n_D^{24} 1.5085 (Found: C, 70.81; H, 9.06. $C_{23}H_{34}O_5$ requires C, 70.74; H, 8.78%); $[a]_D^{28}$ -26.9 (c 1.04 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 1730s (C=O), 1610m (Ar), 1585w (Ar), 1515s (Ar), 1250m (C-O), 1120m (C-O); $\delta_{H}(400 \text{ MHz}; \text{ CDCl}_{3})$ 1.25 (3H, t, J 7.0, CO₂CH₂CH₃), 1.44-1.78 (5H, m, 3-H₂, 3'-H₂ and 4'-H_{ax}), 1.57 (3H, s, Me- $C=C_{cis}$), 1.67 (3H, s, Me- $C=C_{trans}$), 1.95 (2H, dt like, J 8.4 and 7.2, 4-H₂), 2.04 (1H, m, 4'-H_{eq}), 2.53 (1H, ddd, J 10.4, 8.8 and 4.1, 2-H), 3.36 (1H, br s, 5'-H), 3.44 (1H, dd, J 12.8 and $1.6, 6'-H_{ax}$), 3.52 (1H, ddd, J 10.4, 8.8 and 1.6, 2'-H), 3.80 (3H, s, OMe), 4.02 (1H, br d, J 12.8, 6'-H_{eq}), 4.16 (2H, m, $CO_2CH_2CH_3$), 4.46 (1H, d, J 11.8, Ar-CHH), 4.51 (1H, d, J 11.8, Ar-CHH), 5.07 (1H, t like, J 7.6, 5-H), 6.82–6.89 (2H, d like, J 8.4, m-aromatic-H), 7.23-7.29 (2H, d like, J 8.4, o-aromatic-H); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3)$ 14.2, 17.6, 23.7, 25.65, 25.73, 27.0, 28.2, 51.0, 55.2, 60.1, 69.4, 69.5, 70.1, 78.6, 113.6, 123.5, 129.1, 130.7, 132.3, 159.0, 174.7.

Stereochemical assignment of 11a and 11b

Stereochemical assignment of the separated diastereomers 11a and 11b was established by ¹H-NMR analysis at the stage of *alcohol* 14 after reduction of *ester* 11.

To a stirred solution of **11a** (11 mg, 28 μ mol) in hexane (0.5 cm³) was added DIBAL-H (0.95 mol dm⁻³ in hexane; 0.20 cm³, 0.19 mmol) at -5 °C under Ar. After having been stirred at -5 °C for 30 min, the resulting solution was quenched with MeOH. The mixture was filtered through Celite, and the filtrate was concentrated under reduced pressure. The residue was purified by PTLC to give **14a** (7.6 mg, 78%) as a colourless oil. In the same manner as described above, **11b** was converted to **14b** as a colourless oil.

Compound **14a**: $\delta_{\rm H}(400~{\rm MHz};~{\rm CDCl_3})~1.31-1.54~(5H,~{\rm m},~2-H,~3-H_2,~3'-H_{\rm ax}~{\rm and}~4'-H_{\rm ax}),~1.59~(3H,~{\rm s},~{\rm Me-C=C_{\it cis}}),~1.67~(3H,~{\rm br}~{\rm s},~{\rm Me-C=C_{\it trans}}),~1.76-1.84~(1H,~{\rm m},~3'-H_{\rm eq}),~2.00~(2H,~{\rm m},~4-H_2),~2.16-2.23~(1H,~{\rm m},~4'-H_{\rm eq}),~3.12~(1H,~{\rm dd},~J~10.5~{\rm and}~10.5,~6'-H_{\rm ax}),~3.28~(1H,~{\rm ddd},~J~10.8,~6.4~{\rm and}~2.0,~2'-H),~3.43~(1H,~{\rm m},~5'-H),~3.58~(1H,~{\rm dd},~J~11.2~{\rm and}~6.4,~1-H_{\rm a}),~3.77~(1H,~{\rm dd},~J~11.2~{\rm and}~2.7,~1-H_{\rm b}),~3.80~(3H,~{\rm s},~{\rm OMe}),~4.08~(1H,~{\rm ddd},~J~10.5,~4.6~{\rm and}~2.2,~6'-H_{\rm eq}),~4.45~(1H,~{\rm d},~J~11.3,~{\rm Ar-C}HH),~4.52~(1H,~{\rm d},~J~11.3,~{\rm Ar-C}HH),~5.07~(1H,~{\rm tdd},~J~7.1,~1.5~{\rm and}~1.2,~5-H),~6.84-6.91~(2H,~{\rm d}~{\rm like},~J~8.5,~m-{\rm aromatic-H}),~7.21-7.27~(2H,~{\rm d}~{\rm like},~J~8.5,~o-{\rm aromatic-H}).$

Compound **14b**: $\delta_{\rm H}(500~{\rm MHz};~{\rm CDCl_3})~1.20-1.63~(5{\rm H},~{\rm m},~3-{\rm H_2},~3'-{\rm H_2}~{\rm and}~4'-{\rm H_{ax}}),~1.60~(3{\rm H},~{\rm s},~{\rm Me-C=C_{cis}}),~1.68~(3{\rm H},~{\rm s},~{\rm Me-C=C_{trans}}),~1.78~(1{\rm H},~{\rm m},~2-{\rm H}),~1.96~(1{\rm H},~{\rm m},~4-{\rm H_a}),~2.04~(1{\rm H},~{\rm m},~4-{\rm H_b}),~2.18-2.26~(1{\rm H},~{\rm m},~4'-{\rm H_{eq}}),~3.15~(1{\rm H},~{\rm dd},~J~10.4~{\rm and}~10.4,~6'-{\rm H_{ax}}),~3.41~(1{\rm H},~{\rm m},~5'-{\rm H}),~3.48~(1{\rm H},~{\rm dt~like},~J~11.0~{\rm and}~3.0,~2'-{\rm H}),~3.61~(1{\rm H},~{\rm m},~1-{\rm H_a}),~3.70~(1{\rm H},~{\rm m},~1-{\rm H_b}),~3.80~(3{\rm H},~{\rm s},~{\rm OMe}),~4.07~(1{\rm H},~{\rm ddd},~J~10.4,~4.8~{\rm and}~2.4,~6'-{\rm H_{eq}}),~4.46~(1{\rm H},~{\rm d},~J~11.3,~{\rm Ar-C}H{\rm H}),~5.08~(1{\rm H},~{\rm tdd},~J~7.0,~1.5~{\rm and}~1.2,~5-{\rm H}),~6.85-6.90~(2{\rm H},~{\rm d~like},~J~8.5,~m-{\rm aromatic-H}),~7.21-7.29~(2{\rm H},~{\rm d~like},~J~8.5,~o-{\rm aromatic-H}).$

(R)-2-[(2'R,5'S)-5'-(4-Methoxybenzyloxy)tetrahydropyran-2'-yl]-6-methylhept-5-enal 12

To a stirred solution of **11a** (1.60 g, 4.10 mmol) in dry toluene (20 cm³) was added DIBAL-H (1.00 mol dm⁻³ in toluene; 10.0 cm³, 10.0 mmol) dropwise at -78 °C under Ar. After having been stirred at -78 °C for 3 h, the solution was quenched with MeOH at -78 °C. After having been warmed to room temperature with vigorous stirring, the mixture was filtered through Celite and the Celite was washed with Et₂O. After the filtrate and the washings were concentrated under reduced pressure, the residue was chromatographed on SiO₂ to give 12 (1.40 g, 98%) as a colourless oil, n_D^{23} 1.5169 (Found: C, 72.51; H, 8.49. $C_{21}H_{30}O_4$ requires C, 72.80; H, 8.73%); $[a]_D^{24} + 1.70$ (c 1.02 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 2730w (CHO), 1725s (C=O), 1615m (Ar), 1585w (Ar), 1515s (Ar), 1250m (C-O), 1090m (C-O); $\delta_{\rm H}(400 \text{ MHz}; \text{ CDCl}_3) 1.36-1.46 (2H, m, 3'-H_{\rm ax})$ and 4'-H_{ax}), 1.45-1.59 (1H, m, $3-H_a$), 1.56 (3H, s, Me-C= C_{cis}), 1.67 (3H, s, $Me-C=C_{trans}$), 1.73 (1H, m, 3-H_b), 1.78 (1H, m, 3'-H_{eq}), 1.97 (2H, m, 4-H₂), 2.17-2.29 (2H, m, 2-H and 4'-H_{eq}), 3.11 (1H, dd, J 10.6 and 10.6, 6'-H_{ax}), 3.40 (1H, m, 5'-H), 3.45–3.51 (1H, m, 2'-H), 3.79 (3H, s, OMe), 4.04 (1H, ddd, J 10.6, 4.8 and 2.3, 6'-H_{eq}), 4.42 (1H, d, J 11.5, Ar-CHH), 4.50 (1H, d, J 11.5, Ar-CHH), 5.04 (1H, tdd, J 5.9, 1.5 and 1.2, 5-H), 6.84–6.89 (2H, d like, J 8.7, m-aromatic-H), 7.21-7.26 (2H, d like, J 8.7, o-aromatic-H), 9.62 (1H, d, J 3.9, CHO); δ_c (100 MHz; CDCl₃) 17.7, 25.4, 25.6, 26.4, 28.3, 29.9, 55.2, 56.1, 70.4, 70.9, 72.3, $77.4,\,113.8,\,123.2,\,129.2,\,130.4,\,132.8,\,159.2,\,204.3.$

(1S,2S,5R)-2-[(2'R,5'S)-5'-(4-Methoxybenzyloxy)tetrahydropyran-2'-yl]-5-(1-methylethenyl)cyclopentanol 13a

To a stirred solution of **12** (820 mg, 2.37 mmol) in dry CH_2CI_2 (50 cm³) was added Me_2AlCI (0.98 mol dm⁻³ in hexane; 2.45 cm³, 2.40 mmol) dropwise at 0 °C under Ar. After having been stirred at 0 °C for 30 min, the resulting solution was quenched with dil. aq. HCl (1.0 mol dm⁻³) and extracted with Et₂O. The extract was washed with water, saturated aq. NaHCO₃ and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give a mixture of all of the possible diastereomers, **13a**–**c** (807 mg, 98%, **13a**: **13b**: **13c** = 6:3:1 as determined by ¹H-NMR analysis) as a colourless oil. The diastereomers were rechromatographed on spherical SiO₂ [Silica Gel 60 N (spherical, neutral), 40–50 µm, Kanto Chemical Co., Inc.] to give the desired **13a** (484 mg, 59%) as a colourless oil and other isomers, **13b** and **13c** (inseparable mixtures; 313 mg, 38%) as a colourless

solid. An analytical sample of 13b was obtained by recrystallization from hexane as colourless plates.

Compound 13a: a colourless oil, n_D^{25} 1.4505 (Found: C, 72.69; H, 8.59. $C_{21}H_{30}O_4$ requires C, 72.80; H, 8.73%); $[a]_D^{27}$ +7.16 (c 1.00 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 3500m (OH), 1650w (C=C), 1615m (Ar), 1590w (Ar), 1520s (Ar), 1250s (C-O), 1095m (C–O); $\delta_{\rm H}$ (500 MHz; CDCl₃) 1.14–1.23 (1H, m, 3-H_a), 1.29-1.46 (2H, m, 3'-H_{ax} and 4'-H_{ax}), 1.63-1.72 (2H, m, 4-H_a and OH), 1.74-1.80 (2H, m, 4-H_b and 3'-H_{eq}), 1.83 (3H, s, $CH_2=C-CH_3$), 1.83–1.94 (2H, m, 2-H and 3-H_b), 2.18 (1H, m, 4'-H_{eq}), 2.37 (1H, ddd, J 11.6, 5.8 and 5.5, 5-H), 3.02 (1H, ddd, J 10.7, 8.6 and 1.9, 2'-H), 3.14 (1H, dd, J 10.5 and 10.5, 6'-H_{ax}), 3.46 (1H, m, 5'-H), 3.80 (3H, s, OMe), 4.09 (1H, ddd, J 10.5, 4.7) and 2.3, 6'-H_{eq}), 4.14 (1H, dd, J 5.5 and 2.3, 1-H), 4.46 (1H, d, J 11.6, Ar-CHH), 4.51 (1H, d, J 11.6, Ar-CHH), 4.81 (1H, s, $CHH=C-CH_3$), 4.97 (1H, s, $CHH=C-CH_3$), 6.85-6.89 (2H, d like, J 8.6, m-aromatic-H), 7.22-7.28 (2H, d like, J 8.6, o-aromatic-H); $\delta_{\rm C}(126 \, {\rm MHz}; {\rm CDCl_3}) \, 23.3, 26.8, 27.1, 29.1, 30.1,$ 52.0, 52.9, 55.2, 70.4, 70.7, 72.8, 74.6, 80.2, 112.2, 113.8, 129.2, 130.6, 144.2, 159.2.

Compound 13b: colourless plates, mp 70.5–72.0 °C (Found: C, 72.77; H, 8.95. $C_{21}H_{30}O_4$ requires C, 72.80; H, 8.73%); $[a]_D^{25} - 0.98$ (c 1.02 in CHCl₃); $v_{max}(KBr)/cm^{-1}$ 3410s (OH), 1630m (C=C), 1610s (Ar), 1585m (Ar), 1510s (Ar), 1245s (C-O); $\delta_{H}(500 \text{ MHz; CDCl}_{3}) 1.35 (1H, m, 3'-H_{ax}), 1.45 (1H, m, 4'-H_{ax}),$ 1.54 (1H, m, 3-H_a), 1.67–1.83 (3H, m, 3-H_b, 4-H_a and 3'-H_{eq}), 1.82 (3H, s, $CH_2=C-CH_3$), 1.85–1.96 (2H, m, 2-H and 4-H_b), 2.14-2.22 (1H, m, 4'-H_{eq}), 2.42 (1H, dd, J 8.3 and 8.3, 5-H), 3.19 (1H, dd, J 10.4 and 10.4, 6'-H_{ax}), 3.39 (1H, ddd, J 10.7, 8.9 and 1.8, 2'-H), 3.44 (1H, m, 5'-H), 3.80 (3H, s, OMe), 4.07 (1H, ddd, J 10.7, 4.7 and 2.4, 6'-H_{eq}), 4.25 (1H, dd, J 3.4 and 3.4, 1-H), 4.46 (1H, d, J 11.3, Ar-CHH), 4.52 (1H, d, J 11.3, Ar-CHH), 4.82 (1H, s, CHH=C-CH₃), 4.96 (1H, br s, $CHH=C-CH_3$), 6.85–6.89 (2H, d like, J 8.8, m-aromatic-H), 7.22–7.28 (2H, d like, J 8.8, o-aromatic-H); $\delta_{\rm C}$ (126 MHz; CDCl₃) 23.3, 24.7, 24.8, 29.6, 30.1, 50.1, 52.4, 55.2, 70.4, 70.6, 72.5, 72.9, 77.7, 111.4, 113.8, 129.2, 130.6, 144.2, 159.2.

(1S,2S,5S)-2-[(2'R,5'S)-5'-(4-Methoxybenzyloxy)tetrahydropyran-2'-yl]-5-(1-methylethenyl)cyclopentanol 13c

To a stirred solution of 12 (1.40 g, 4.04 mmol) in dry CH₂Cl₂ (90 cm^3) was added $SnCl_4$ $(1.0 \text{ mol dm}^{-3} \text{ in CH}_2Cl_2; 4.0 \text{ cm}^3, 4.0 \text{ cm}^3)$ mmol) dropwise at -78 °C under Ar. After having been stirred at -78 °C for 15 min, the resulting solution was quenched with dil. aq. HCl (1.0 mol dm⁻³) and extracted with CH₂Cl₂. The extract was washed with water, saturated aq. NaHCO₃ and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give a mixture of 13a and 13c (1.11 g, 80%, 13a : 13c = 3 : 7, as determined by ¹H-NMR analysis) as a colourless oil. The mixture was rechromatographed on spherical SiO₂ [Silica Gel 60 N (spherical, neutral), 40–50 μm, Kanto Chemical Co., Inc.] to give **13a** (337 mg, 24%) and the desired **13c** (774 mg, 55%) as a colourless oil, $n_{\rm D}^{23}$ 1.5171 (Found: C, 72.66; H, 8.48. $C_{21}H_{30}O_4$ requires C, 72.80; H, 8.73%); $[a]_{D}^{27}$ +6.88 (c 1.03 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 3550s (OH), 1650m (C=C), 1610s (Ar), 1585m (Ar), 1510s (Ar), 1240m (C–O), 1090m (C–O); δ_{H} (400 MHz; CDCl₃) 1.16–1.55 (4H, m, 3-H_a, 4-H_a, 3'-H_{ax} and 4'-H_{ax}), 1.72– 1.91 (4H, m, 2-H, 3-H_b, 4-H_b and 3'-H_{eq}), 1.75 (3H, s, CH_2 = $C-CH_3$), 2.12–2.20 (1H, m, 4'-H_{eq}), 2.46 (1H, dt, J 9.5 and 9.5, 5-H), 3.18 (1H, dd, J 10.5 and 10.5, 6'-H_{ax}), 3.14–3.22 (1H, m, 2'-H), 3.44 (1H, m, 5'-H), 3.80 (3H, s, OMe), 3.83 (1H, dd, J 9.5 and 8.1, 1-H), 4.09 (1H, ddd, J 10.5, 4.6 and 2.2, 6'-H_{eq}), 4.46 (1H, d, J 11.3, Ar-CHH), 4.52 (1H, d, J 11.3, Ar-CHH), 4.79 (1H, s, CHH=C-CH₃), 4.86 (1H, s, CHH=C-CH₃), 6.84-6.91 (2H, d like, J 8.8, m-aromatic-H), 7.22–7.28 (2H, d like, J 8.8, o-aromatic-H); $\delta_{\rm C}(100 \, {\rm MHz}; {\rm CDCl_3}) \, 20.1, 24.0, 26.6, 29.8, 29.9,$ 50.7, 53.2, 55.3, 70.5, 70.6, 72.6, 80.0, 83.4, 110.5, 113.9, 129.2, 130.5, 145.8, 159.3.

(1S,2R,5R)-2-[(2'R,5'S)-5'-(4-Methoxybenzyloxy)tetrahydropyran-2'-yl]-1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane 15a

To a stirred solution of 13a (916 mg, 2.64 mmol) in dry CH₂Cl₂ (15 cm³) were added 2,6-lutidine (2,6-dimethylpyridine) (0.62 cm³, 5.3 mmol) and TBDMSOTf (0.91 cm³, 4.0 mmol) at 0 °C. After having been stirred at 0 °C for 15 min, the resulting solution was added to water and extracted with CH₂Cl₂. The extract was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give 15a (1.20 g, 99%) as a colourless oil, $n_{\rm D}^{25}$ 1.5031 (Found: C, 70.31; H, 9.70. $C_{27}H_{44}O_4Si$ requires C, 70.39; H, 9.63%); [a] $_{\rm D}^{26}$ +4.67 (c 1.03 in CHCl $_{
m 3}$); $v_{\rm max}$ (film)/cm $^{-1}$ 1640w (C=C), 1610m (Ar), 1585w (Ar), 1515s (Ar), 1250s $(Si-CH_3)$; $\delta_H(400 \text{ MHz}; CDCl_3) 0.01, 0.03 (6H, each s, SiMe_2),$ 0.82 (9H, s, SiBu^t), 1.05-1.16 (1H, m, 3-H_a), 1.23 (1H, m, 3'- H_{ax}), 1.38 (1H, m, 4'- H_{ax}), 1.53–1.63 (1H, m, 4- H_{a}), 1.70–1.79 (1H, m, 3'-H_{eq}), 1.75 (3H, s, CH₂=C-CH₃), 1.79-1.92 (3H, m, 2-H, 3-H_b and 4-H_b), 2.10–2.22 (2H, m, 5-H and 4'-H_{eq}), 2.89 (1H, ddd, J 10.6, 8.5 and 1.9, 2'-H), 3.11 (1H, dd, J 10.5 and 10.5, 6'-H_{ax}), 3.44 (1H, m, 5'-H), 3.81 (3H, s, OMe), 4.08 (1H, ddd, J 10.5, 4.8 and 2.3, 6'- H_{eq}), 4.20 (1H, d, J 4.6, 1-H), 4.48 (1H, d, J 11.5, Ar-CHH), 4.52 (1H, d, J 11.5, Ar-CHH), 4.69 (1H, s, CHH=C-CH₃), 4.77 (1H, s, CHH=C-CH₃), 6.84-6.91 (2H, d like, J 8.8, m-aromatic-H), 7.22–7.30 (2H, d like, J 8.6, o-aromatic-H); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3) -5.1, -4.1, 18.1, 23.1,$ 25.8, 26.4, 27.0, 28.7, 30.3, 52.2, 53.7, 55.2, 70.3, 70.6, 73.1, 75.9, 80.1, 110.8, 113.8, 129.1, 130.7, 144.6, 159.1.

(1S,2R,5S)-2-[(2'R,5'S)-5'-(4-Methoxybenzyloxy)tetrahydropyran-2'-yl]-1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)-cyclopentane 15a'

In the same manner as described above, 13c (641 mg, 1.85 mmol) was converted to 15a' (832 mg, 98%) as a colourless oil, $n_{\rm D}^{25}$ 1.5041 (Found: C, 70.23; H, 9.74. $C_{27}H_{44}O_4Si$ requires C, 70.39; H, 9.63%); $[a]_{\rm D}^{24}$ +28.9 (c 1.04 in CHCl₃); $\nu_{\rm max}({\rm film})/{\rm cm}^{-1}$ 1650w (C=C), 1620m (Ar), 1595w (Ar), 1525s (Ar), 1260s (Si–CH₃); $\delta_{\rm H}$ (500 MHz; CDCl₃) 0.00, 0.02 (6H, each s, SiMe₂), 0.85 (9H, s, SiBu^t), 1.29-1.49 (4H, m, 3-H_a, 4-H_a, 3-H_{ax} and $4'-H_{ax}$), 1.67–1.81 (3H, m, 3- H_{b} , 4- H_{b} and 3'- H_{eq}), 1.70 (3H, s, $CH_2=C-CH_3$), 1.97 (1H, m, 2-H), 2.17–2.23 (1H, m, 4'-H_{eq}), 2.44 (1H, dt like, J 8.3 and 6.4, 5-H), 3.13 (1H, dd, J 10.7 and $10.4, 6'-H_{ax}$), 3.18 (1H, ddd, J 10.7, 6.7 and 1.8, 2'-H), 3.45 (1H, m, 5'-H), 3.80 (3H, s, OMe), 3.94 (1H, dd, J 6.4 and 6.1, 1-H), 4.07 (1H, ddd, J 10.7, 4.7 and 2.3, 6'-H_{eq}), 4.47 (1H, d, J 11.4, Ar-CHH), 4.52 (1H, d, J 11.4, Ar-CHH), 4.74 (1H, br s, CHH=C-CH₃), 4.75 (1H, br s, CHH=C-CH₃), 6.85-6.89 (2H, d like, J 8.9, m-aromatic-H), 7.23-7.27 (2H, d like, J 8.9, o-aromatic-H); $\delta_{\rm C}(126~{\rm MHz};~{\rm CDCl_3})~-4.4,~-4.1,~18.1,~20.3,$ 25.0, 26.0, 27.3, 28.5, 30.2, 52.3, 55.3, 56.3, 70.4, 70.8, 73.0, 78.7, 79.2, 111.1, 113.8, 129.2, 130.7, 146.2, 159.2.

(2*R*,5*S*)-2-[(1'*S*,2'*R*,5'*R*)-1'-(*tert*-Butyldimethylsilyloxy)-5'-(1-methylethenyl)-2'-cyclopentyl]tetrahydropyran-5-ol 15b

To a stirred mixture of **15a** (195 mg, 0.423 mmol) in CH₂Cl₂ (7.0 cm³) and water (0.7 cm³) was added DDQ (144 mg, 0.635 mmol) at 0 °C. After having been stirred at room temperature for 2 h, the mixture was quenched with saturated aq. NaHCO₃ and extracted with CH₂Cl₂. The extract was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give **15b** (140 mg, 97%) as a colourless oil, n_D^{24} 1.4812 (Found: C, 66.83; H, 10.50. C₁₉H₃₆O₃Si requires C, 67.01; H, 10.65%); [a]₂₉ -0.57 (c 1.03 in CHCl₃); v_{max}(film)/cm⁻¹ 3350s (OH), 1650m (C=C), 1255s (Si-CH₃); δ _H(500 MHz; CDCl₃) 0.00, 0.03 (6H, each s, SiMe₂), 0.82 (9H, s, SiBu'), 1.06–1.16 (1H, m, 3'-H_a), 1.24–1.41 (2H, m, 3-H_{ax} and 4-H_{ax}), 1.52 (1H, br s, OH), 1.56–1.63 (1H, m, 4'-H_a), 1.72–1.78 (1H, m, 3-H_{eq}), 1.75 (3H, s, CH₂=C-CH₃),

1.81–1.93 (3H, m, 2'-H, 3'-H_b and 4'-H_b), 2.09–2.18 (2H, m, 4-H_{eq} and 5'-H), 2.89 (1H, ddd, J 10.4, 8.6 and 1.9, 2-H), 3.05 (1H, dd, J 10.5 and 10.1, 6-H_{ax}), 3.69 (1H, m, 5-H), 3.99 (1H, ddd, J 10.5, 4.9 and 2.5, 6-H_{eq}), 4.21 (1H, d, J 4.6, 1'-H), 4.69 (1H, s, CHH=C-CH₃), 4.77 (1H, br s, CHH=C-CH₃); $\delta_{\rm C}$ (126 MHz; CDCl₃) -5.1, -4.2, 18.1, 23.1, 25.8, 26.5, 27.1, 28.7, 33.1, 52.2, 53.6, 66.6, 72.7, 76.0, 79.8, 110.9, 144.5.

(2*R*,5*S*)-2-[(1'*S*,2'*R*,5'*S*)-1'-(*tert*-Butyldimethylsilyloxy)-5'-(1-methylethenyl)-2'-cyclopentyl]tetrahydropyran-5-ol 15b'

In the same manner as described above, **15a**′ (753 mg, 1.63 mmol) was converted to **15b**′ (541 mg, 97%) as a colourless oil, $n_{\rm D}^{23}$ 1.4811 (Found: C, 66.89; H, 10.59. $\rm C_{19}H_{36}O_3Si$ requires C, 67.01; H, 10.65%); $[a]_{\rm D}^{26}$ +25.6 (c 1.04 in CHCl₃); $v_{\rm max}({\rm film})/{\rm cm}^{-1}$ 3400s (OH), 1640w (C=C), 1250m (Si–CH₃); $\delta_{\rm H}(500~{\rm MHz};$ CDCl₃) 0.00, 0.02 (6H, each s, SiMe₂), 0.85 (9H, s, SiBu'), 1.31–1.50 (4H, m, 3-H_{ax}, 4-H_{ax}, 3'-H_a and 4'-H_a), 1.54 (1H, s, OH), 1.65–1.83 (3H, m, 3-H_{eq}, 3'-H_b and 4'-H_b), 1.70 (3H, s, CH₂= C–CH₃), 1.97 (1H, m, 2'-H), 2.10–2.18 (1H, m, 4-H_{eq}), 2.44 (1H, dt like, J 8.3 and 6.5, 5'-H), 3.06 (1H, dd, J 10.7 and 10.4, 6'-H_{ax}), 3.16 (1H, m, 2-H), 3.68 (1H, m, 5-H), 3.96 (1H, dd, J 6.5 and 6.1, 1'-H), 3.99 (1H, ddd, J 10.7, 4.8 and 2.3, 6-H_{eq}), 4.74 (1H, br s, CHH=C–CH₃), 4.75 (1H, br s, CHH=C–CH₃); $\delta_{\rm C}$ (126 MHz; CDCl₃) -4.4, -4.2, 18.0, 20.4, 25.2, 25.9, 27.4, 28.5, 33.0, 52.3, 56.4, 66.5, 72.8, 78.7, 78.9, 111.0, 146.2.

(R)-2-[(1'S,2'R,5'R)-1'-(tert-Butyldimethylsilyloxy)-5'-(1-methylethenyl)-2'-cyclopentyl]tetrahydropyran-5-one 16

To a stirred solution of 15b (127 mg, 0.373 mmol) in CH₂Cl₂ (4.5 cm³) were added the Dess-Martin periodinane (209 mg, 0.496 mmol) and three drops of pyridine at 0 °C. After having been stirred at room temperature for 40 min, the resulting mixture was diluted with Et2O and then were added saturated aq. NaHCO₃ and saturated aq. Na₂S₂O₃ with vigorous stirring. The mixture was extracted with Et₂O. The extract was then washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO_2 to give **16** (118 mg, 94%) as a colourless oil, n_D^{24} 1.4785 (Found: C, 67.25; H, 10.09. C₁₉H₃₄O₃Si requires C, 67.40; H, 10.12%); $[a]_D^{29}$ +19.5 (c 1.03 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 1725s (C=O), 1645w (C=C), 1255m (Si-CH₃); δ_{H} (500 MHz; CDCl₃) -0.01, 0.03 (6H, each s, SiMe₂), 0.82 (9H, s, SiBu'), 1.09-1.20 $(1H, m, 3'-H_a), 1.58-1.68 (1H, m, 4'-H_a), 1.76 (3H, s, CH_2=$ $C-CH_3$), 1.76–1.86 (1H, m, 3- H_{ax}), 1.86–1.98 (2H, m, 3'- H_b and 4'-H_b), 1.98–2.06 (1H, m, 2'-H), 2.06–2.13 (1H, m, 3-H_{eq}), 2.18 (1H, ddd, J 10.9, 5.8 and 4.9, 5'-H), 2.41 (1H, ddd, J 16.8, 11.3) and 6.8, 4-H_a), 2.58 (1H, dddd, J 16.8, 4.0, 4.0 and 1.5, 4-H_b), 3.32 (1H, ddd, J 12.2, 9.8 and 3.0, 2-H), 3.93 (1H, d, J 16.4, 6-H_a), 4.14 (1H, dd, J 16.4 and 1.5, 6-H_b), 4.26 (1H, d, J 4.9, 1'-H), 4.71 (1H, s, CHH=C-CH₃), 4.79 (1H, br s, CHH= C-CH₃); $\delta_{\rm C}$ (126 MHz; CDCl₃) -5.1, -4.2, 18.0, 23.1, 25.8, 26.5, 27.0, 28.2, 37.0, 52.2, 53.5, 74.1, 75.9, 78.4, 111.1, 144.0,

(R)-2-[(1'S,2'R,5'S)-1'-(tert-Butyldimethylsilyloxy)-5'-(1-methylethenyl)-2'-cyclopentyl]tetrahydropyran-5-one 16'

In the same manner as described above, **15b**′ (222 mg, 0.652 mmol) was converted to **16**′ (211 mg, 95%) as a colourless oil, $n_{\rm D}^{23}$ 1.4780 (Found: C, 67.21; H, 10.07. $C_{19}H_{34}O_3Si$ requires C, 67.40; H, 10.12%); $[a]_{\rm D}^{24}$ +46.5 (c 1.02 in CHCl₃); $\nu_{\rm max}({\rm film})/{\rm cm}^{-1}$ 1725s (C=O), 1645w (C=C), 1250m (Si–CH₃); $\delta_{\rm H}(500~{\rm MHz};$ CDCl₃) 0.01, 0.02 (6H, each s, SiMe₂), 0.85 (9H, s, SiBu′), 1.39–1.48 (1H, m, 3′-H_a), 1.48–1.57 (1H, m, 4′-H_a), 1.72 (3H, s, CH₂=C-CH₃), 1.79–1.94 (3H, m, 3-H_{ax}, 3′-H_b and 4′-H_b), 2.02–2.12 (2H, m, 3-H_{eq} and 2′-H), 2.38–2.50 (2H, m, 4-H_a and 5′-H), 2.60 (1H, dt like, J 16.8 and 4.3, 4-H_b), 3.55 (1H, ddd, J 10.4, 7.3 and 3.1, 2-H), 3.91 (1H, d, J 16.5, 6-H_{ax}), 4.07 (1H, dd, J 5.8 and 5.5, 1′-H), 4.14 (1H, dd, J 16.5 and 1.7, 6-H_{eq}),

4.74–4.78 (2H, m, C H_2 =C–C H_3); $\delta_{\rm C}$ (126 MHz; CDCl₃) –4.5, –4.1, 18.0, 20.6, 25.6, 25.9, 27.6, 28.6, 37.1, 52.5, 56.4, 74.2, 77.6, 78.6, 111.0, 146.0, 208.6.

Methyl (Z)-2-{(R)-2'-[(1"S,2"R,5"R)-1"-(tert-butyldimethylsilyloxy)-5"-(1-methylethenyl)-2"-cyclopentyl]tetrahydropyran-5'-ylidene}acetate 18a

To a stirred solution of (S)-17 (dried azeotropically with toluene; 136 mg, 0.337 mmol) in dry THF (2.0 cm³) was added NaHMDS (1.0 mol dm⁻³ in THF; 310 mm³, 0.31 mmol) at -78 °C under Ar. After the resulting solution was stirred at -78 °C for 40 min, a solution of **16** (19 mg, 56 μ mol) in dry THF (1.0 cm³) was added dropwise. After having been stirred at -20 °C for 24 h, the resulting solution was quenched with saturated aq. NH₄Cl and extracted with EtOAc. The extract was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO_2 to give **18a** (20 mg, 91%, E: Z = ca. 1:5 as determined by ¹H-NMR analysis) as a colourless oil, n_D^{24} 1.4889 (Found: C, 67.07; H, 9.69. C₂₂H₃₈O₄Si requires C, 66.96; H, 9.71%); $[a]_D^{28}$ +18.8 (c 1.00 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 1720s (C=O), 1660m (C=C), 1650m (C=C), 1255m (Si-CH₃); (Z)-**18a**: $\delta_{\rm H}(400~{\rm MHz}; {\rm CDCl_3})~0.00,~0.03~(6{\rm H,~each~s,~SiMe_2}),~0.82~(9{\rm H},$ s, SiBu'), 1.06-1.18 (1H, m, 3"-H_a), 1.48 (1H, m, 3'-H_{ax}), 1.55-1.65 (1H, m, 4"- H_a), 1.76 (3H, s, $CH_2=C-CH_3$), 1.80–1.99 (4H, m, $3'-H_{eq}$, 2''-H, $3''-H_{b}$ and $4''-H_{b}$), 2.16 (1H, ddd, J 10.6, 5.6 and 4.9, 5"-H), 2.30-2.41 (1H, m, 4'-H_a), 2.46 (1H, dt like, J 14.4 and 4.4, 4'-H_b), 3.11 (1H, ddd, J 10.9, 8.6 and 2.8, 2'-H), 3.69 (3H, s, CO₂Me), 4.01 (1H, br d, J 15.1, 6'-H_a), 4.23 (1H, d, J 4.9, 1"-H), 4.69 (1H, s, CHH=C-CH₃), 4.78 (1H, br s, CHH=C-CH₃), 5.46 (1H, d, J 15.1, 6'-H_b), 5.66 (1H, s, 2-H); $\delta_{\rm C}(100 \text{ MHz; CDCl}_3) -5.1, -4.1, 18.1, 23.1, 25.8, 26.1, 26.9,$ 30.1, 32.6, 51.1, 52.2, 53.7, 66.9, 75.9, 79.2, 110.9, 114.0, 144.4, 157.4, 166.3; (E)-18a: δ_{H} (500 MHz; CDCl₃) -0.01, 0.02 (6H, each s, SiMe₂), 0.82 (9H, s, SiBu^t), 1.08-1.19 (1H, m, 3"-H_a), $1.40 (1H, m, 3'-H_{ax}), 1.57-1.64 (1H, m, 4"-H_{a}), 1.75 (3H, s,$ $CH_2=C-CH_3$), 1.82-1.96 (4H, m, 3'-H_{eq}, 2"-H, 3"-H_b and 4"-H_b), 2.12-2.21 (2H, m, 4'-H_a and 5"-H), 3.17 (1H, ddd, J 10.6, 8.9 and 1.7, 2'-H), 3.70 (3H, s, CO₂Me), 3.81 (1H, br d, J 14.9, 4'-H_b), 4.02 (1H, d, J 13.1, 6'-H_a), 4.15 (1H, dd, J 13.1 and 1.2, 6'-H_b), 4.22 (1H, d, J 4.3, 1"-H), 4.70 (1H, s, CHH= C-CH₃), 4.78 (1H, s, CHH=C-CH₃), 5.68 (1H, s, 2-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) -5.1, -4.1, 18.1, 23.1, 25.8, 26.3, 26.6, 27.0, 30.2, 51.1, 52.2, 53.7, 72.9, 75.8, 80.4, 110.9, 113.9, 144.4, 156.1,

Methyl (Z)-2-{(R)-2'-[(1"S,2"R,5"S)-1"-(tert-butyldimethylsilyloxy)-5"-(1-methylethenyl)-2"-cyclopentyl]tetrahydropyran-5'-ylidene)}acetate 18a'

To a stirred mixture of (CF₃CH₂O)₂P(=O)CH₂CO₂Me (103 mg, 0.324 mmol) and 18-crown-6 (recrystallized MeCN complex; 243 mg, 0.796 mmol) in dry toluene (4.0 cm³) was added KHMDS (0.5 mol dm⁻³ in toluene; 0.64 cm³, 0.32 mmol) at -78 °C under Ar. After the resulting mixture was stirred at -78 °C for 30 min, a solution of **16**′ (54 mg, 0.16 mmol) in dry toluene (2.0 cm³) was added dropwise. After having been stirred at -40 °C for 20 h, the resulting solution was quenched with saturated aq. NH₄Cl and extracted with EtOAc. The extract was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give **18a**' (57 mg, 91%, E: Z = ca. 4:6 as determined by ${}^{1}\text{H-NMR}$ analysis) as a colourless oil, n_{D}^{23} 1.4878 (Found: C, 66.99; H, 9.86. $C_{22}H_{38}O_4Si$ requires C, 66.96; H, 9.71%); $[a]_{\rm D}^{28}$ +44.8 (c 1.03 in CHCl₃); $v_{\rm max}({\rm film})/{\rm cm}^{-1}$ 1720s (C=O), 1660m (C=C), 1255m (Si–CH₃); (Z)-18a': $\delta_{\rm H}$ (500 MHz; CDCl₃) 0.00, 0.03 (6H, each s, SiMe₂), 0.85 (9H, s, SiBu'), 1.38-1.63 (3H, m, 3'-H_{ax}, 3"-H_a and 4"-H_a), 1.71 (3H, s, $CH_2=C-CH_3$), 1.75–1.85 (3H, m, 3'- H_{eq} , 3"- H_b and 4"- H_b), 2.01 (1H, m, 2"-H), 2.37 (1H, m, 4'-H_a), 2.41–2.50 (2H, m, 4'-H_b)

and 5"-H), 3.36 (1H, ddd, J 10.4, 7.3 and 3.1, 2'-H), 3.69 (3H, s, CO₂Me), 3.97–4.05 (2H, m, 6'-H_a and 1"-H), 4.74 (1H, m, $CHH=C-CH_3$), 4.76 (1H, br s, $CHH=C-CH_3$), 5.46 (1H, d, J 15.0, 6'-H_b), 5.66 (1H, s, 2-H); (E)-**18a**': $\delta_{\rm H}$ (500 MHz; CDCl₃) 0.01, 0.02 (6H, each s, SiMe₂), 0.85 (9H, s, SiBu'), 1.38–1.63 $(3H, m, 3'-H_{ax}, 3''-H_{a} \text{ and } 4''-H_{a}), 1.71 (3H, s, CH_{2}=C-CH_{3}),$ 1.75-1.85 (3H, m, 3'-H_{eq}, 3"-H_b and 4"-H_b), 2.01 (1H, m, 2"-H), 2.17 (1H, m, 4'-H_a), 2.41-2.50 (1H, m, 5"-H), 3.43 (1H, ddd, J 11.0, 7.1 and 2.2, 2'-H), 3.70 (3H, s, CO_2Me), 3.82 (1H, m, 4'-H_b), 3.97–4.05 (2H, m, 6'-H_a and 1"-H), 4.14 (1H, dd, J 13.1 and 1.8, 6'-H_b), 4.74 (1H, m, CHH=C-CH₃), 4.76 (1H, br s, CHH=C-CH₃), 5.68 (1H, s, 2-H); (Z)- and (E)-18a': $\delta_{\rm C}$ (126) MHz; CDCl₃) -4.4, -4.2, -4.1, 18.0, 20.46, 20.51, 25.15, 25.19, 25.9, 26.5, 28.5, 28.6, 29.2, 29.3, 32.6, 51.08, 51.11, 52.6, 52.7, 56.40, 56.44, 67.1, 73.0, 78.2, 78.50, 78.54, 79.5, 110.97, 111.01, 113.97, 114.02, 146.13, 146.14, 156.0, 157.3, 166.3,

(Z)-2- $\{(R)-2'-[(1''S,2''R,5''R)-1''-(tert-Butyldimethylsilyloxy)-5''-(1-methylethenyl)-2''-cyclopentyl]tetrahydropyran-5'-ylidene}-ethanol 18b$

To a stirred solution of **18a** (E: Z = ca. 1:5; 182 mg, 0.461)mmol) in CH₂Cl₂ (3.5 cm³) was added DIBAL-H (1.01 mol dm⁻³ in toluene; 1.37 cm³, 1.38 mmol) dropwise at -78 °C under Ar. After having been warmed to 0 °C with stirring for 3 h, the resulting solution was quenched with MeOH at 0 °C and warmed to room temperature with vigorous stirring. The mixture was filtered through Celite and the Celite was washed with Et₂O. The filtrate and the washings were concentrated under reduced pressure, and the residue was chromatographed on spherical SiO₂ [Silica Gel 60 N (spherical, neutral), 40–50 μm, Kanto Chemical Co., Inc.] to give the desired 18b (131 mg, 78%) as a colourless solid and its (E)-isomer (25 mg, 15%) as a colourless oil. An analytical sample of 18b was obtained by recrystallization from hexane as colourless needles, mp 70.0-72.0 °C (Found: C, 68.55; H, 10.63. C₂₁H₃₈O₃Si requires C, 68.80; H, 10.45%); $[a]_D^{23}$ +8.14 (c 1.00 in CHCl₃); v_{max} (KBr)/cm⁻¹ 3280m (OH), 1650m (C=C), 1250s (Si-CH₃); δ_{H} (500 MHz; CDCl₃) 0.00, 0.03 (6H, each s, SiMe₂), 0.82 (9H, s, SiBu^t), 1.09-1.20 (1H, m, 3"-H_a), 1.37 (1H, m, 3'-H_{ax}), 1.60 (1H, m, 4"-H_a), 1.67 (1H, br s, OH), 1.73–1.81 (1H, m, 3'-H_{eq}), 1.75 (3H, s, $CH_2=C-CH_3$), 1.82–1.96 (3H, m, 2"-H, 3"-H_b and 4"-H_b), 2.16 (1H, ddd, J 10.8, 5.8 and 5.2, 5"-H), 2.22–2.30 (1H, m, 4'-H_a), 2.32–2.38 (1H, m, 4'-H_b), 3.09 (1H, ddd, J 10.4, 8.6 and 1.9, 2'-H), 3.75 (1H, d, J 13.1, 6'-H_a), 4.07 (1H, ddd, J 12.4, 6.4 and 1.5, 1-H_a), 4.21 (1H, br d, J 5.8, 1"-H), 4.22 (1H, dd, J 12.4 and 7.9, 1-H_b), 4.60 (1H, br d, J 13.1, 6'-H_b), 4.69 (1H, s, CHH= C-CH₃), 4.77 (1H, br s, CHH=C-CH₃), 5.44 (1H, dd, J 7.9 and 6.4, 2-H); $\delta_{\rm C}(126 \text{ MHz}; \text{CDCl}_3) -5.0, -4.1, 18.0, 23.1, 25.8,$ 26.1, 26.9, 31.2, 33.0, 52.2, 53.7, 58.1, 66.2, 75.9, 80.4, 110.9, 122.6, 138.0, 144.5; (E)-isomer: $\delta_{\text{H}}(500 \text{ MHz}; \text{CDCl}_3) 0.00, 0.03$ (6H, each s, SiMe₂), 0.82 (9H, s, SiBu^t), 1.08-1.19 (1H, m, 3"-H_a), 1.30 (1H, m, 3'-H_{ax}), 1.56–1.64 (1H, m, 4"-H_a), 1.74–1.82 (1H, m, 3'- H_{eq}), 1.75 (3H, s, CH_2 =C- CH_3), 1.82–1.96 (3H, m, 2"-H, 3"-H_b and 4"-H_b), 2.01 (1H, dd like, J 14.3 and 14.3, 4'-H_a), 2.16 (1H, ddd, J 10.7, 5.8 and 4.9, 5"-H), 2.72 (1H, ddd like, J 14.3, 2.1 and 1.9, 4'-H_b), 3.10 (1H, ddd, J 10.5, 8.7 and 2.0, 2'-H), 3.94 (1H, d, J 12.5, 6'-H_a), 4.12 (1H, dd, J 12.5 and 1.9, 6'-H_b), 4.15 (1H, dd, J 12.2 and 6.7, 1-H_a), 4.22 (1H, br d, J 4.9, 1"-H), 4.22 (1H, dd, J 12.2 and 7.0, 1-H_b), 4.69 (1H, s, CHH=C-CH₃), 4.77 (1H, br s, CHH=C-CH₃), 5.49 (1H, dd, J 7.0 and 6.7, 2-H); $\delta_{\rm C}(126 \text{ MHz}; \text{CDCl}_3) -5.1, -4.1, 18.1,$ 23.1, 25.7, 25.8, 26.3, 27.0, 30.6, 52.2, 53.8, 58.3, 73.5, 75.9, 80.5, 110.9, 122.3, 138.2, 144.6.

(Z)-2-{(R)-2'-[(1"S,2"R,5"S)-1"-(tert-Butyldimethylsilyloxy)-5"-(1-methylethenyl)-2"-cyclopentyl]tetrahydropyran-5'-ylidene}-ethanol 18b'

In the same manner as described above, 18a' (E: Z = ca. 4: 6;

54 mg, 0.14 mmol) was converted to the desired 18b' (27 mg, 54%) as a colourless oil and its (E)-isomer (20 mg, 40%) as a colourless oil. 18b': a colourless oil, $n_{\rm D}^{20}$ 1.4949 (Found: C, 68.52; H, 10.37. C₂₁H₃₈O₃Si requires C, 68.80; H, 10.45%); [a]_D²³ +40.9 (c 1.04 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 3370m (OH), 1645m (C=C), 1250s (Si–CH₃); $\delta_{\rm H}(400~{\rm MHz};~{\rm CDCl_3})~0.00,~0.02~(6{\rm H},$ each s, SiMe₂), 0.85 (9H, s, SiBu^t), 1.37-1.52 (3H, m, 3'-H_{ax}, $3''-H_a$ and $4''-H_a$), 1.62–1.83 (3H, m, $3'-H_{eq}$, $3''-H_b$ and $4''-H_b$), 1.67 (1H, br s, OH), 1.70 (3H, s, $CH_2=C-CH_3$), 2.00 (1H, m, 2"-H), 2.21-2.32 (1H, m, $4'-H_a$), 2.33-2.40 (1H, m, $4'-H_b$), 2.44(1H, dt like, J 8.0 and 6.4, 5"-H), 3.37 (1H, ddd, J 11.0, 6.6 and 1.9, 2'-H), 3.75 (1H, d, J 13.0, 6'-H_a), 3.95 (1H, dd, J 6.4 and 6.4, 1"-H), 4.06 (1H, ddd, J 12.4, 6.3 and 1.4, 1-H_a), 4.21 (1H, dd, J 12.4 and 7.6, 1-H_b), 4.60 (1H, dd, J 13.0 and 1.4, 6'-H_b), 4.74 (1H, d, J 1.4, CHH=C-CH₃), 4.75 (1H, s, CHH=C-CH₃), 5.45 (1H, dd, J 7.6 and 6.3, 2-H); $\delta_{\rm C}(100 \text{ MHz}; \text{CDCl}_3) - 4.3$, -4.1, 18.0, 20.4, 24.8, 25.9, 28.5, 30.0, 33.0, 52.5, 56.3, 58.1, 66.3, 78.5, 79.4, 111.1, 122.7, 138.0, 146.1; (E)-isomer: $\delta_{\rm H}$ (400 MHz; CDCl₃) 0.00, 0.02 (6H, each s, SiMe₂), 0.85 (9H, s, SiBu'), 1.32–1.51 (3H, m, 3'-H_{ax}, 3"-H_a and 4"-H_a), 1.66–1.83 $(3H, m, 3'-H_{eq}, 3''-H_b \text{ and } 4''-H_b), 1.70 (3H, s, CH_2=C-CH_3),$ 1.95-2.08 (2H, m, 4'-H_a and 2"-H), 2.44 (1H, dt like, J 7.6 and 6.3, 5"-H), 2.74 (1H, ddd like, J 14.2, 2.2 and 1.7, 4'-H_b), 3.38 (1H, ddd, J11.0, 6.8 and 1.7, 2'-H), 3.95 (1H, d, J12.4, 6'-H_a), 3.97 (1H, dd, J 6.3 and 6.3, 1"-H), 4.12 (1H, dd, J 12.4 and 1.7, 6'-H_b), 4.14 (1H, dd, J 12.4 and 6.8, 1-H_a), 4.22 (1H, dd, J 12.4 and 7.1, 1-H_b), 4.74 (1H, d, J 1.4, CHH=C-CH₃), 4.76 (1H, s, CHH=C-CH₃), 5.49 (1H, dd, J 7.1 and 6.8, 2-H); $\delta_{\rm C}$ (100 MHz; $CDC1_3$) -4.3, -4.1, 18.0, 20.5, 25.1, 25.7, 26.0, 28.6, 29.5, 52.7, 56.4, 58.3, 73.6, 78.6, 79.5, 110.9, 122.5, 138.2, 146.3.

(1S,2R,5R)-2-[(2'R,5'Z)-5'-(2''-Bromoethylidene)-tetrahydropyran-2'-yl]-1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)-cyclopentane 19a

To a stirred solution of **18b** (101 mg, 0.275 mmol) in DMF (6.0 cm³) were added LiBr (103 mg, 1.18 mmol), s-collidine (2,4,6-trimethylpyridine) (145 mm³, 1.10 mmol) and DMAP (ca. 3 mg) at 0 °C under Ar. The mixture was stirred at 0 °C for 10 min and then treated with Ms₂O (recrystallized from dry Et₂O; 192 mg, 1.10 mmol). After having been stirred at 4 °C for 24 h, saturated aq. NaHCO₃ was added to the mixture, then it was diluted with water, and extracted with Et₂O. The extract was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give recovered **18b** (18 mg, 18%) and unstable **19a** (90 mg, 93% based on consumed **18b**) as a pale yellow oil. This oil was employed immediately for the next steps.

(1S,2R,5S)-2-[(2'R,5'Z)-5'-(2''-Bromoethylidene)-tetrahydropyran-2'-yl]-1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)-cyclopentane 19a'

In the same manner as described above, 18b' (27 mg, 74 µmol) was converted to unstable 19a' (12 mg, 64% based on consumed 18b') as a pale yellow oil and 18b' (11 mg, 41%) was recovered. This oil was employed immediately for the next steps.

(1S,2R,5R)-2-[(2' R,5' Z)-5'-(2"-Phenylsulfonylethylidene)-tetrahydropyran-2'-yl]-1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane 19b

To a solution of **19a** (90 mg, 0.21 mmol) in DMF (2 cm³) was added PhSO₂Na·2H₂O (84 mg, 0.42 mmol) at room temperature. After the reaction mixture had been stirred at room temperature for 16 h, water was added to the reaction mixture, and it was extracted with Et₂O. The extract was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give **19b** (89 mg, 87%) as a colourless oil, n_D^{23} 1.5174 (Found: C, 66.18; H, 8.51. $C_{27}H_{42}O_4SSi$ requires C, 66.08; H, 8.63%); $[a]_2^{16}$ +68.6

(c 1.01 in CHCl₃); $v_{\text{max}}(\text{film})/\text{cm}^{-1}$ 1650w (C=C), 1585w (Ar), 1445m (Ar), 1310s (SO₂), 1250s (Si–CH₃), 1150s (SO₂); $\delta_{\rm H}(500$ MHz; $CDCl_3$) -0.03, -0.02 (6H, each s, $SiMe_2$), 0.81 (9H, s, SiBu¹), 1.03–1.14 (1H, m, 3-H_a), 1.26 (1H, m, 3'-H_{ax}), 1.57 (1H, m, 4-H_a), 1.69–1.77 (1H, m, 3'-H_{eq}), 1.73 (3H, s, $CH_2=C-CH_3$), 1.78-1.90 (3H, m, 2-H, 3-H_b and 4-H_b), 2.11 (1H, ddd, J 10.7, 5.4 and 4.6, 5-H), 2.18-2.27 (1H, m, 4'-H_a), 2.34-2.41 (1H, m, 4'-H_b), 2.98 (1H, dd like, J 8.6 and 8.6, 2'-H), 3.36 (1H, d, J 13.4, 6'-H_a), 3.76 (1H, dd, J 14.3 and 7.0, 2"-H_a), 3.86 (1H, dd, J 14.3 and 9.2, 1"-H_b), 4.13 (1H, d, J 4.6, 1-H), 4.19 (1H, d, J 13.4, 6'-H_b), 4.68 (1H, s, CHH=C-CH₃), 4.77 (1H, s, CHH=C-CH₃), 5.24 (1H, dd, J 9.2 and 7.0, 1"-H), 7.56 (2H, dd, J 8.0 and 7.4, m-aromatic-H), 7.66 (1H, ddd, J 7.4, 7.4 and 1.2, *p*-aromatic-H), 7.85 (2H, dd, *J* 8.0 and 1.2, *o*-aromatic-H); $\delta_{\rm C}(126 \text{ MHz}; {\rm CDCl_3}) -5.0, -4.1, 18.0, 23.1, 25.8, 26.1, 26.9,$ 31.0, 33.1, 52.1, 53.6, 55.1, 65.8, 75.8, 80.2, 109.1, 111.0, 129.1, 133.7, 138.5, 144.4, 145.0.

(1S,1'S,2R,2'R,5R,5'R)-2,2'-{5,5'-[(RS)-2-Phenylsulfonylbutane-1,4-diylidene]bis[(2R,5Z)-tetrahydropyran-2-yl]}bis[1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane] 20a

To a stirred solution of **19b** (22 mg, 45 μmol) and 18-crown-6 (recrystallized MeCN complex;¹⁹ 68 mg, 0.22 mmol) in dry THF (2.0 cm³) was added KHMDS (0.5 mol dm⁻³ in toluene; 90 mm³, 45 μmol) at −78 °C under Ar. After the reaction mixture had been stirred at −78 °C for 30 min to give a yellow solution, a solution of **19a** (crude; 12 mg, 28 μmol) in dry THF (0.6 cm³) was added dropwise. After having been stirred at −78 °C for 20 min, the resulting solution was quenched with saturated aq. NH₄Cl and extracted with Et₂O. The extract was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on SiO₂ to give recovered **19b** (8 mg, 36%) and **20a** (20 mg, 84% based on consumed **19b**, 85% based on **19a**) as a colourless oil. It was found to be contaminated with *ca*. 20% of inseparable impurities (checked by ¹H-NMR analysis).

(1S,1'S,2R,2'R,5R,5'S)-2,2'-{5,5'-[(RS)-2-Phenylsulfonylbutane-1,4-diylidene]bis[(2R,5Z)-tetrahydropyran-2-yl]}bis[1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane] 20a'

In the same manner as described above, **19b** (32 mg, 65 μ mol) and **19a**' (crude; 12 mg, 28 μ mol) were converted to **20a**' (21 mg, 78% based on consumed **19b**, 90% based on **19a**') as a colourless oil and **19b** (16 mg, 50%) was recovered. It was found to be contaminated with *ca*. 20% of inseparable impurities (checked by ¹H-NMR analysis).

(1S,1'S,2R,2'R,5R,5'R)-2,2'-{5,5'-[Butane-1,4-diylidene]bis-[(2R,5Z)-tetrahydropyran-2-yl]}bis[1-(*tert*-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane] 20b

To a mixture of 20a (20 mg, 24 μmol) and Na₂HPO₄ (34 mg, 0.24 mmol) in dry MeOH (2.0 cm³) was added 5% Na-Hg (ca. 200 mg, excess) with vigorous stirring at 0 °C under Ar. After having been stirred at room temperature for 26 h, the resulting mixture was diluted with Et₂O and then filtered through Celite, and the Celite was washed with Et₂O. After the filtrate and the washings had been concentrated under reduced pressure, the residue was chromatographed on SiO₂ to give recovered 20a (7 mg, 35%) and 20b (12 mg, quant. based on consumed 20a) as a colourless oil. It was found to be contaminated with ca. 30% of inseparable impurities (checked by ¹H-NMR analysis). This oil was used in the next reaction without further purification. **20b**: $\delta_{H}(400 \text{ MHz}; \text{CDCl}_{3}) 0.01$, 0.04 (12H, each s, $2 \times SiMe_2$), 0.82 (18H, s, $2 \times SiBu'$), 1.03-1.39 (4H, m, $5/5'-H_{ax}$ and $8/8'-H_{a}$), 1.51-1.79 (4H, m, 5/5'-H_{eq} and 9/9'-H_a), 1.76 (6H, br s, 12/12'-H₃), 1.79–1.97 (6H, m, 7/7'-H, 8/8'-H_b and 9/9'-H_b), 1.97-2.36 (10H, m, 1/1'-H₂, 4/4'-H₂ and 10/10'-H), 3.00-3.10 (2H, m, 6/6'-H), 3.69 (2H, d, J 12.7, 15/15'-H_a), 4.22 (2H, br d, J 4.6, 14/14'-H), 4.54 (2H, d, J 12.7, 15/15'-H_b), 4.69 (2H, s, 13/13'-H_a), 4.77 (2H, s, 13/13'-H_b), 5.15 (2H, br t, J 6.3, 2/2'-H). The 1 H-NMR spectrum of this compound was assigned according to the numbering system as illustrated in Fig. 1.

(1*S*,1'*S*,2*R*,2'*R*,5*R*,5'*S*)-2,2'-{5,5'-[Butane-1,4-diylidene]bis-[(2*R*,5*Z*)-tetrahydropyran-2-yl]}bis[1-(*tert*-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane] 20b'

In the same manner as described above, **20a**′ (21 mg, 25 μmol) was converted to **20b**' (inseparable mixtures; 12 mg, 91% based on consumed **20a**') as a colourless oil and **20a**' (5 mg, 24%) was recovered. It was found to be contaminated with ca. 30% of inseparable impurities (checked by ¹H-NMR analysis). This oil was used in the next reaction without further purification. 20b' $\delta_{\rm H}(500~{\rm MHz;~CDCl_3})~0.01,~0.04~(12\rm H,~each~s,~2\times SiMe_2),~0.82,$ 0.86 (18H, each s, $2 \times \text{SiBu}'$), 1.03–1.51 (5H, m, 5/5'-H_{ax}, $8/8'-H_a$ and $9'-H_a$), 1.53–1.95 (8H, m, $5/5'-H_{eq}$, 7-H, $8/8'-H_b$, 9- H_a and 9/9'- H_b), 1.71 (3H, s, 12'- H_3), 1.76 (3H, br s, 12- H_3), 1.95–2.37 (10H, m, 1/1'-H₂, 4/4'-H₂, 7'-H and 10-H), 2.45 (1H, dt like, J 8.0 and 6.4, 10'-H), 3.00–3.09 (1H, m, 6-H), 3.31–3.39 (1H, m, 6'-H), 3.69 (1H, d, J 12.7, 15-H_a), 3.71 (1H, d, J 12.7, 15'-H_a), 3.97 (1H, dd, J 6.4 and 6.4, 14'-H), 4.22 (1H, br d, J 4.6, 14-H), 4.54 (1H, d, J 12.7, 15-H_b), 4.55 (1H, d, J 12.7, 15'-H_b), 4.69 (1H, s, 13-H_a), 4.74 (1H, s, 13'-H_a), 4.77 (2H, s like, 13/13'-H_b), 5.14 (1H, m, 2'-H), 5.15 (1H, m, 2-H). The ¹H-NMR spectrum of this compound was assigned according to the numbering system as illustrated in Fig. 1.

(1S,1'S,2S,2'S,5R,5'R)-2,2'-{5,5'-[Butane-1,4-diylidene]bis-[(2R,5Z)-tetrahydropyran-2-yl]}bis[5-(1-methylethenyl)cyclopentanol] (testudinariol A) 1

To a stirred solution of 20b (inseparable mixture; 12 mg, 18 μmol) in dry THF (1.0 cm³) was added TBAF (1.0 mol dm⁻³; 0.40 cm³, 0.40 mmol) at room temperature under Ar. After having been stirred at room temperature for 20 h, the resulting solution was quenched with water, and extracted with Et₂O. The extract was washed with brine, dried (MgSO₄), and concentrated under reduced pressure. The residue was chromatographed on spherical SiO₂ [Silica Gel 60 N (spherical, neutral), 40–50 μm, Kanto Chemical Co., Inc.] to give 1 (3.4 mg, 2 steps, 47%) as a colourless oil, $[a]_{D}^{26}$ +13 (c 0.17 in CHCl₃); $v_{\text{max}}(\text{CHCl}_3)/\text{cm}^{-1}$ 3680w (OH), 1640w (C=C), 1075s (C-O); $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3) 1.15-1.28 (2H, m, 8/8'-H_a), 1.41 (2H, m,$ 5/5'- H_{ax}), 1.65–1.92 (8H, m, 5/5'- H_{eq} , 8/8'- H_{b} and 9/9'- H_{2}), 1.83 (6H, s, 12/12'-H₃), 1.91–2.03 (4H, m, 1/1'-H_a and 7/7'-H), 2.03– $2.13 \text{ (2H, m, } 1/1'-H_{\text{h}}), 2.17-2.27 \text{ (2H, m, } 4/4'-H_{\text{a}}), 2.27-2.33$ (2H, m, 4/4'-H_b), 2.40 (2H, ddd, J 11.5, 5.8 and 5.5, 10/10'-H), 3.18 (2H, ddd, J 10.4, 8.5 and 1.9, 6/6'-H), 3.72 (2H, d, J 12.5, 15/15'-H_a), 4.15–4.20 (2H, m, 14/14'-H), 4.59 (2H, br d, J 12.5, 15/15'-H_b), 4.81 (2H, s, 13/13'-H_a), 4.97 (2H, s, 13/13'-H_b), 5.16 (2H, br t, J 5.8, 2/2'-H); $\delta_{\rm C}$ (126 MHz; CDCl₃) 23.3, 26.7, 27.1, 27.3, 32.0, 33.0, 52.0, 53.1, 66.7, 74.8, 80.7, 112.2, 123.4, 134.2, 144.4; m/z (EI) 470 (25%)[M⁺], 452 (36), 442 (3), 434 (12), 424 (4), 370 (7), 343 (16), 327 (22), 300 (13), 234 (28), 219 (28) [Found: (HREI-MS) 470.3400 [M $^{+}$]. $C_{30}H_{46}O_{4}$ requires 470.3396]. The ¹H-NMR spectrum of this compound was assigned according to the numbering system as illustrated in Fig. 1.

(1S,1'S,2S,2'S,5R,5'S)-2,2'-{5,5'-[Butane-1,4-diylidene]bis-[(2R,5Z)-tetrahydropyran-2-yl]}bis[5-(1-methylethenyl)cyclopentanol] (testudinariol B) 1'

In the same manner as described above, 20b' (inseparable mixture; 12 mg, 18 μ mol) was converted to 1' (3.2 mg, 2 steps, 36%)

as a colourless oil, $[a]_D^{25} + 19$ (c 0.16 in CHCl₃); v_{max} (CHCl₃)/cm⁻¹ 3525w (OH), 1645w (C=C), 1075s (C-O); δ_{H} (500 MHz; CDCl₃) $1.15 - 1.28 \; (2H, \, m, \, 8/8' - H_a), \; 1.39 \; (1H, \, m, \, 5' - H_{ax}), \; 1.41 \; (1H, \, m, \, 4/8' - H_a)$ 5-H_{ax}), 1.50 (1H, m, 9'-H_a), 1.65-1.92 (8H, m, 5/5'-H_{eq}, 7'-H, $8/8'-H_b$, $9-H_a$ and $9/9'-H_b$), 1.75 (3H, s, $12'-H_3$), 1.83 (3H, s, $12-H_3$), 1.91-2.03 (3H, m, $1/1'-H_a$ and 7-H), 2.03-2.13 (2H, m, $1/1'-H_h$), 2.17–2.33 (4H, m, $4/4'-H_2$), 2.40 (1H, ddd, J 11.5, 5.8 and 5.5, 10-H), 2.47 (1H, dt, J 9.5 and 9.5, 10'-H), 3.18 (1H, ddd, J 10.4, 8.5 and 1.9, 6-H), 3.35 (1H, ddd, J 11.0, 9.2 and 1.9, 6'-H), 3.72 (1H, d, J 12.5, 15-H_a), 3.76 (1H, d, J 12.5, 15'-H_a), 3.85 (1H, dd, J 9.5 and 8.8, 14'-H), 4.15-4.20 (1H, m, 14-H), 4.59 (2H, br d, J 12.5, 15/15'-H_b), 4.80 (1H, br s, 13'-H_a), 4.82 $(1H, s, 13-H_a), 4.87$ $(1H, br s, 13'-H_b), 4.97$ $(1H, s, 13-H_b), 5.17$ (1H, m, 2-H), 5.18 (1H, m, 2'-H); $\delta_{\rm C}$ (126 MHz; CDCl₃) 20.2, 23.3, 23.7, 26.6, 26.7, 27.1, 27.2, 27.3, 32.0, 32.6, 32.7, 33.0, 50.9, 52.0, 53.06, 53.14, 66.62, 66.64, 74.8, 80.1, 80.7, 83.9, 110.4, 112.2, 123.3, 123.8, 133.8, 134.3, 144.4, 145.9; *m/z* (EI) 470 (15%)[M⁺], 452 (21), 442 (2), 434 (7), 424 (3), 370 (6), 343 (11), 327 (14), 300 (11), 234 (39), 219 (18) [Found: (HREI-MS) $470.3409 \text{ [M}^{+}\text{]}$. $C_{30}H_{46}O_{4}$ requires 470.3396]. The ¹H-NMR spectrum of this compound was assigned according to the numbering system as illustrated in Fig. 1.

Acknowledgements

We thank Professor G. Cimino (Istituto per la Chimica di Molecole di Interesse Biologico, Napoli, Italy) for sending us the ¹H-NMR spectrum of 1 prior to publication. We acknowledge financial support by the Ministry of Education, Science, Sports and Culture, Japan.

References

- 1 Part 5. D. Nozawa, H. Takikawa and K. Mori, J. Chem. Soc., Perkin Trans. 1, 2000, 2043.
- 2 A. Spinella, E. Mollo, E. Trivellone and G. Cimino, *Tetrahedron*, 1997, **53**, 16891.
- 3 K. F. Albizati, J. R. Pawlik and D. J. Faulkner, *J. Org. Chem.*, 1985, **50**, 3428.
- 4 F. S. De Guzman and F. J. Schmitz, *J. Org. Chem.*, 1991, **56**, 55. The proposed structure for naurol A was disproved by our synthesis. ¹
- 5 (a) K. Mori, H. Takikawa, M. Kido, K. F. Albizati and D. J. Faulkner, *Nat. Prod. Lett.*, 1992, 1, 59; (b) K. Mori, H. Takikawa and M. Kido, *J. Chem. Soc.*, *Perkin Trans.* 1, 1993, 169.
- 6 H. Takikawa, M. Yoshida and K. Mori, Tetrahedron Lett., 2001, 42, 1527.
- 7 A. H. McNeill and E. J. Thomas, Tetrahedron Lett., 1993, 34, 1669
- 8 N. Nakajima, K. Horita, R. Abe and O. Yonemitsu, *Tetrahedron Lett.*, 1988, **29**, 4139.
- 9 M. Kodama, Y. Shiobara, H. Sumitomo, K. Fukuzumi, H. Minami and Y. Miyamoto, *J. Org. Chem.*, 1988, **53**, 1437.
- (a) Y. Horiguchi, E. Nakamura and I. Kuwajima, *J. Am. Chem. Soc.*,
 1989, 111, 6257; (b) B. B. Snider, D. J. Rodini, M. Karras, T. C. Kirk,
 E. A. Deutsch, R. Cordova and R. T. Price, *Tetrahedron*, 1981, 37,
 3927
- 11 K. Mikami, T.-P. Loh and T. Nakai, J. Am. Chem. Soc., 1990, 112, 6737
- 12 Y. Oikawa, T. Yoshioka and O. Yonemitsu, *Tetrahedron Lett.*, 1982, 23, 885.
- 13 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155.
- 14 K. Tanaka, Y. Ohta and K. Fuji, *Tetrahedron Lett.*, 1993, 34, 4071.
- 15 D. A. Evans, P. H. Carter, E. M. Carreira, A. B. Charette, J. A. Prunet and M. Lautens, J. Am. Chem. Soc., 1999, 121, 7540.
- 16 (a) W. C. Still and C. Gennari, Tetrahedron Lett., 1983, 24, 4405; (b) P. L. L. Tudanca, K. Jones and P. Brownbridge, J. Chem. Soc., Perkin Trans. 1, 1992, 533.
- 17 K. Ando, J. Org. Chem., 1997, 62, 1934.
- 18 A. Yanagisawa, H. Hibino, S. Habaue, Y. Hisada and H. Yamamoto, *Bull. Chem. Soc. Jpn.*, 1995, 68, 1263 and other references cited therein.
- 19 G. W. Gokel and D. J. Cram, J. Org. Chem., 1974, 39, 2445.