Triterpenoid total synthesis. Part 6. ${ }^{1}$ Synthesis of testudinariols A and B, triterpene metabolites of the marine mollusc Pleurobrancus testudinarius

Masao Yoshida, Hirosato Takikawa and Kenji Mori *
Department of Chemistry, Science University of Tokyo, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan

Received (in Cambridge, UK) 23rd January 2001, Accepted 1st March 2001
First published as an Advance Article on the web 3rd April 2001

Testudinariols $\mathrm{A}(\mathbf{1})$ and $\mathrm{B}\left(\mathbf{1}^{\prime}\right)$ are ichthyotoxic and structurally unusual triterpene alcohols isolated from the skin and the mucus of the marine mollusc Pleurobrancus testudinarius. The first synthesis of $(+)-\mathbf{1}$ and $(+)-\mathbf{1}^{\prime}$ was achieved by starting from (R)-glycidol.

Introduction

In 1997, Spinella et al. isolated testudinariol A (1) and its $\mathrm{C}-10^{\prime}$ epimer, testudinariol $\mathrm{B}\left(\mathbf{1}^{\prime}\right)$ (Fig. 1) as metabolites of the marine mollusc Pleurobrancus testudinarius. ${ }^{2}$ These compounds are structurally unique triterpene alcohols and thought to be defensive allomones of P. testudinarius, because 1 was ichthyotoxic against Gambusia affinis. The partially cyclized squalene skeleton present in $\mathbf{1}$ and $\mathbf{1}^{\prime}$ is biosynthetically unusual, since the general biosynthetic pathway for polycyclic triterpenoid via squalene 2,3 -oxide does not provide such a carbon skeleton. Only two similar skeletons have been reported, in the cases of limatulones [$\mathbf{2}$ and $\mathbf{2}^{\prime}$, defensive metabolites of the limpet Achmeia (Collisella) limatula ${ }^{3}$ and naurols ($\mathbf{3}$ and $\mathbf{3}^{\prime}$, metabolites of the marine sponges with cytotoxicity to murine leukemia cells P388). ${ }^{4}$ All of these natural products are C_{2}-symmetric triterpene alcohols or their diastereomers. We became interested in the unique structures of these marine triterpenoids and have studied their synthesis. Up to the present, synthesis of $\mathbf{2}$, $\mathbf{2}^{\prime 5}$ and $\mathbf{3}^{1}$ has been accomplished and reported by us. Very recently, we achieved the first synthesis of $(+)-1$ and reported it as a preliminary communication. ${ }^{6}$ Herein the synthesis of testudinariols $\mathrm{A}(\mathbf{1})$ and $\mathrm{B}\left(\mathbf{1}^{\prime}\right)$ will be described in detail.

Results and discussion

Synthetic plan

Scheme 1 shows our synthetic plan for testudinariol A (1). Because a structural feature of target compound $\mathbf{1}$ is its C_{2} symmetry, $\mathbf{1}$ can be obtained by dimerization or its equivalent operation of \mathbf{A}. The intermediate \mathbf{A} may be prepared from \mathbf{B} by (Z)-selective installation of the two-carbon appendage. For the stereoselective construction of the cyclopentane portion of \mathbf{B}, an intramolecular ene reaction is appropriate employing \mathbf{C} as the substrate. The intramolecular oxy-Michael-type cyclization of \mathbf{D} has been adopted to prepare the tetrahydropyran ring of C. The intermediate \mathbf{D} can be synthesized from $\mathbf{F}[(R)$-glycidol] via the known diol $\mathbf{E} .{ }^{7}$ This synthetic plan is also applicable to the synthesis of testudinariol B(1').

Synthesis of testudinariol A

The starting (R)-glycidol $(\mathbf{4},=\mathbf{F})$ was converted to the known diol 5 (=E) (Scheme 2). ${ }^{7}$ Selective TBDMS protection of the primary hydroxy group of $\mathbf{5}$ was followed by treatment with 4-methoxybenzyl trichloroacetimidate ${ }^{8}$ to give $\mathbf{6 b}$ (77% yield, 2 steps). The enantiomeric purity of $\mathbf{6 b}$ was determined by HPLC

Fig. 1 Structures of testudinariols A (1), B(1') and related metabolites.

Table 1 Intramolecular oxy-Michael-type cyclization ($\mathbf{1 0 b} \rightarrow \mathbf{1 1 a - d}$)

Run	$\mathbf{1 0 b} E: Z$	Base a	Solvent	Temp. ${ }^{\circ} \mathrm{C}$	Time/h	Yield $^{b}(\%)$	Ratio $^{c} \mathbf{1 1 a}: \mathbf{1 1 b}: \mathbf{1 1 c d}$
1	$3: 2$	NaH	THF	0 to rt	4	98	$1: 2: 3.5$
2	$4: 1$	NaH	THF	0 to rt	18	97	$1: 2: 2$
3	$5: 1$	$\mathrm{Bu}^{t} \mathrm{OK}$	THF	-10 to 4	20	93	$1: 1: 0.8$
4	$5: 1$	LiH^{2}	MeCN	60	24	93	$1: 1.3: 1.2$
5	$5: 1$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	40	24	No reaction	-
6^{d}	$1: 10$	$\mathrm{Bu}^{t} \mathrm{OK}$	THF	-10 to 0	2	90	$c a .1: 1: 1$
7^{d}	$1: 10$	NaH	THF	rt	6	90	$c a .1: 2: 3$

${ }^{a}$ One eq. of $\mathbf{1 0 b}$ and $1.3 \sim 1.5$ eq. of base were used in all runs except for run 3 (0.1 eq.) and $6\left(\sim 0.5\right.$ eq.). ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. ${ }^{d}$ The corresponding Me ester was used as the substrate.

Scheme 2 Synthesis of testudinariol A (1)-1. Reagents and conditions: (a) TBDMSCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (85\%); (b) 4-methoxybenzyl trichloroacetimidate, $\mathrm{TfOH}, \mathrm{Et}_{2} \mathrm{O}(90 \%)$; (c) $\mathrm{OsO}_{4}, \mathrm{NMO}$, $\mathrm{Bu}^{t} \mathrm{OH}$, acetone, $\mathrm{H}_{2} \mathrm{O}(93 \%)$; (d) aq. $\mathrm{NaIO}_{4}, \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(98 \%)$; (e) ethyl 2-diethoxyphosphoryl-6-methylhept-5-enoate, $\mathrm{Bu}^{t} \mathrm{OK}$, toluene, $-20^{\circ} \mathrm{C}(93 \%, E: Z=5: 1)$; (f) PPTS, $\mathrm{MeOH}(99 \%)$.
analysis to be 97.6% ee. This ether $\mathbf{6 b}$ was subjected to OsO_{4} mediated dihydroxylation and subsequently treated with NaIO_{4} to furnish $\mathbf{8}(91 \%, 2$ steps). The aldehyde $\mathbf{8}$ was then employed for the Horner-Wadsworth-Emmons (HWE) reaction with ethyl 2-diethoxyphosphoryl-6-methylhept-5-enoate ${ }^{9}$ (9) under several different conditions, and the use of $\mathrm{Bu}^{t} \mathrm{OK}$ in toluene as the base at $-20^{\circ} \mathrm{C}$ provided the best result, furnishing $\mathbf{1 0 a}$

Fig. 2 Stereochemical assignment of 11a and 11b.
in 93% yield ($E: Z=5: 1$). Although these conditions resulted in the best (E)-selectivity, it turned out that (E)-geometry was not important for the diastereoselectivity in the later Michaeltype cyclization. After removal of the TBDMS protective group (99%), the resulting $\mathbf{1 0 b}(=\mathbf{D})$ was exposed to one of the key steps, intramolecular Michael-type cyclization.
Table 1 summarizes the results of our studies on diastereoselective cyclization. Our first attempt to obtain the desired diastereomer 11a as the predominant product under kinetic control was unfortunately problematic. Although a wide range of bases, $\mathrm{NaH}, \mathrm{LiH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, TBAF, etc., and Lewis acids, $\mathrm{ZnCl}_{2}, \mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{TiCl}_{4}$, etc., were examined under various conditions, appropriate conditions to furnish 11a diastereoselectively could not be established. We then tried to obtain a mixture of all of the possible diastereomers under thermodynamic control. Thus, 10b was treated with $\mathrm{Bu}^{t} \mathrm{OK}$ (0.1 eq.) in THF at -10 to $4^{\circ} \mathrm{C}$ to give, in 93% yield, a mixture of 11a-d (11a:11b $: 11 \mathbf{c}: 11 \mathrm{~d}=5: 5: 2: 2$, as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis). Under these conditions, the geometry of the conjugated double bond did not play any role in determining diastereoselectivity, and the ratio of the products reflected the thermodynamic equilibrium.
Stereochemical assignment of 11a-d was achieved as follows. At first, trans- or cis-2,5-substitution on the tetrahydropyran ring could easily be deduced based on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of 11a-d. However, the orientation of the homoprenyl group was difficult to deduce. Therefore, 11a and 11b, whose stereostructures were uncertain at the time, were reduced with DIBAL-H to afford $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$, respectively. The observed ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data including NOE correlation depicted in Fig. 2 suggested that the stereostructures of 14a and 14b (hence 11a and 11b) were as illustrated therein. In the same manner, the stereostructures of 11c and 11d were also elucidated. Although the desired 11a was not predominant, chromatographic separation of diastereomers was possible, and the undesired three isomers (11b-d) could be recycled to the initial mixture by treatment with $\mathrm{Bu}^{t} \mathrm{OK}$ at $4^{\circ} \mathrm{C}$. By repeating this process three times, 11a was obtained in 68% overall yield.
The next challenge was the stereoselective construction of the cyclopentane fragment. As mentioned in the synthetic plan, an ene reaction was thought to be appropriate, and the aldehyde

Table 2 Diastereoselective ene reaction $(\mathbf{1 2} \rightarrow \mathbf{1 3 a - c})$

Run	Lewis acid a	Solvent	Temp. ${ }^{\circ} \mathrm{C}$	Time/min	Yield $^{b}(\%)$	Ratio $^{c} \mathbf{1 3 a}: \mathbf{1 3 b}: \mathbf{1 3 c}$
1	$\mathrm{Me}_{2} \mathrm{AlCl}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	30	>95	$6: 3: 1$
2	$\mathrm{E}_{2} \mathrm{AlCl}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	60	>95	$6: 3: 1$
3	SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	15	Decomp.	-
4	SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78	15	80	$3: 0: 7$
5	$\left(\mathrm{Pr}^{\mathbf{O}}\right)_{2} \mathrm{TiCl}_{4}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78	60	Decomp.	-

${ }^{a} 1.0$ eq. of Lewis acid was used. ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

Scheme 3 Synthesis of testudinariol A (1)—2. Reagents and conditions: (a) But ${ }^{t} \mathrm{OK}$ ($0.1 \mathrm{eq}$.), THF, -10 to $4{ }^{\circ} \mathrm{C}\left(93 \%\right.$ for a mixture of 11a-d); (b) SiO_{2} chromatography (overall 68% for 11a); (c) DIBAL-H, toluene, $-78^{\circ} \mathrm{C}(98 \%)$; (d) 1.0 eq. $\mathrm{Me}_{2} \mathrm{AlCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}(59 \%)$.

12 (= C), which was prepared by DIBAL-H reduction of 11a (98%), was submitted to it (Scheme 3). As shown in Table 2, when aldehyde 12 was treated with $\mathrm{Me}_{2} \mathrm{AlCl}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{10}$ at $0{ }^{\circ} \mathrm{C}$, the desired 13a $(=\mathbf{B})$ was generated as the major isomer in a moderate selectivity ($\mathbf{1 3 a}: \mathbf{1 3 b}: \mathbf{1 3} \mathbf{c}=6: 3: 1$). This selectivity was not so high but acceptable for our synthesis of $\mathbf{1}$. In addition, the conditions as listed in entry $4{ }^{11}$ provided 13 c as the major isomer, and this reversal of selectivity was exactly what we desired for the synthesis of testudinariol B (1'). Structure elucidation of 13a-c was mainly established by NOE experiments, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data of $\mathbf{1 3 a}$ and 13 c concerning the cyclopentane portion were in good accord with those reported for natural $\mathbf{1}$ and $\mathbf{1}^{\prime}$, respectively.

The remaining tasks were the preparation of the key intermediate \mathbf{A} and its dimerization or its equivalent operation, which were realized as follows. The hydroxy group of 13a was protected as TBDMS ether (99%), and the resulting 15a was treated with DDQ ${ }^{12}$ to give $\mathbf{1 5 b}$ in 97% yield (Scheme 4). Oxidation of $\mathbf{1 5 b}$ with the Dess-Martin periodinane ${ }^{13}$ afforded 16 in 94% yield. The ketone 16 was employed for the next (Z) selective HWE reaction. As shown in Table 3, treatment with a chiral phosphonoacetate $(S)-\mathbf{1 7}$ developed by Fuji and co-workers ${ }^{14}$ in the presence of NaHMDS ${ }^{15}$ realized the best (Z)-selectivity ($E: Z=c a .1: 5$), while other commercially available HWE reagents developed by Still $\left[\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(=\mathrm{O}) \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right]^{16}$ and Ando $\left[(\mathrm{PhO})_{2} \mathrm{P}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right]^{17}$ were less selective. It was also noteworthy that the reaction with $(R)-\mathbf{1 7}$ proceeded with the opposite selectivity ($E: Z=16: 1$). It was, to the best of our knowledge, the first example in which Fuji's phosphonoacetate (17) afforded the (E)-isomer as major product. The resulting inseparable mixture of (Z) - and (E)-18a was reduced with DIBAL-H and purified by SiO_{2} chromatography to give geometrically pure (Z)-18b in 78% yield. The alcohol 18b was then converted to the corresponding bromide 19a (93%) and sulfone $\mathbf{1 9 b}(87 \%)$ in the conventional manner.

The final challenge was "dimerization". We first attempted to
dimerize 19a by a metal mediated homo-coupling of allylic halide, ${ }^{18}$ and found that the following conditions gave no successful result: Na-naphthalenide in THF at $-78^{\circ} \mathrm{C}$; K-naphthalenide in THF at $-95^{\circ} \mathrm{C} ; \mathrm{BaI}_{2}$, Li-biphenylide in THF at $-78^{\circ} \mathrm{C},{ }^{\mathbf{1 8}}$ etc. However, the methodology employed for the synthesis of limatulones, "sulfone coupling", could be applied successfully to overcome the difficulty. Accordingly, the carbanion derived from 19b by treatment with KHMDS was alkylated with 19 a in the presence of 18 -crown- 6 at $-78^{\circ} \mathrm{C}$ to give the coupling product 20 a in 84% yield. It was noteworthy that the conventional conditions, $\mathrm{Bu}^{n} \mathrm{Li}$ in THF-HMPA, did not work at all, and the corresponding chloride $(\mathrm{X}=\mathrm{Cl})$ did not react with 19b completely even under our successful conditions. The coupling product 20a was desulfonylated by reduction with $\mathrm{Na}-\mathrm{Hg}$ to afford 20b. Although a small amount of inseparable impurity(ies), which was not the (E, Z)-isomer, was found to be present, the final deprotection of TBDMS groups made purification possible to give pure (+)-testudinariol A (1) (47\% yield, 2 steps $),[a]_{\mathrm{D}}^{26}=+13\left(c=0.17, \mathrm{CHCl}_{3}\right)\left\{\right.$ ref. $2[a]_{\mathrm{D}}^{25}=+15.2$ $\left.\left(c=0.3, \mathrm{CHCl}_{3}\right)\right\}$. Other physical and spectral data of synthetic $(+)-1$ were in good accord with those reported for the naturally occurring 1 . The overall yield was 5.2% based on $\mathbf{5}$ in 19 steps.

Synthesis of testudinariol B (1')

It was obvious that the synthesis of testudinariol B(1') could be accomplished by just substituting the intermediate 13a by 13c. Thus, the intermediate $\mathbf{1 3 c}$ was converted into $\mathbf{1 6}^{\prime}$ in 3 steps (90% yield) (Scheme 5). However, treatment of $\mathbf{1 6}^{\prime}$ with (S) - $\mathbf{1 7}$ in the presence of NaHMDS , the successful combination, gave a roughly $1: 1$ mixture of (E) - and $(Z)-\mathbf{1 8} \mathbf{a}^{\prime}$. This unpredictable decrease in (Z)-selectivity led us to examine other (Z)-selective HWE reagents again, but only a slight improvement was observed ($E: Z=c a .4: 6$), when Still's phosphonoacetate ${ }^{16}$ was used. The resulting E - Z-mixture of $18 \mathbf{a}^{\prime}$ was reduced and the product was purified to give pure $(Z)-\mathbf{1 8 b}^{\prime}(49 \%, 2$ steps $)$.

Table $3(Z)$-Selective Horner-Wadsworth-Emmons reaction $(\mathbf{1 6} \rightarrow \mathbf{1 8 a})$

Run	Reagent ${ }^{\text {a }}$	Base	Additive	Solvent	Temp. $/{ }^{\circ} \mathrm{C}$	Time/h	Yield ${ }^{\text {b }}$ (\%)	$18 \mathbf{a}^{c} E: Z$
$1{ }^{\text {d }}$	A	NaHMDS	-	THF	-40	24	>90	3:2
2	B	KHMDS	18-C-6 ${ }^{\text {e }}$	THF	-40	6	>90	1:2
3	B	KHMDS	$18-\mathrm{C}-6^{e}$	Toluene	-40	10	93	1:2
$4{ }^{\text {d }}$	C	KHMDS	$18-\mathrm{C}-6^{e}$	THF	-40	6	>90	1:1.3
5	(S)-D	NaHMDS	-	THF	-20	24	91	1:5
6	(R)-D	NaHMDs	-	THF	-20	24	94	16:1

${ }^{a}$ Reagents: A. $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, B. $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}(\mathrm{Still}), \mathbf{C} .(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}(\mathrm{Ando})$, D. chiral phosphonoacetate $(=\mathbf{1 7})$ (Fuji). ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. ${ }^{d}$ The corresponding Et ester was obtained as the product. ${ }^{e}$ 18-crown- 6 .

16

Scheme 4 Synthesis of testudinariol A (1)-3. Reagents and conditions: (a) TBDMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (99%); (b) DDQ, aq. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(97 \%)$; (c) Dess-Martin periodinane, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(94 \%)$; (d) (S)-17, NaHMDS, THF, -78 to $-20^{\circ} \mathrm{C}(91 \%, E: Z=1: 5)$; (e) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (78\%); (f) $\mathrm{Ms}_{2} \mathrm{O}, \mathrm{LiBr}, \mathrm{DMAP}, s$-collidine, DMF (93%); (g) $\mathrm{PhSO}_{2} \mathrm{Na}, \mathrm{DMF}$ (87%); (h) KHMDS, 18-crown-6, THF then 19a (84%); (i) $\mathrm{Na}-\mathrm{Hg}, \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{MeOH}$; (j) TBAF, THF (47%, 2 steps).

The remaining steps were fortunately straightforward, and we could accomplish the synthesis of $(+)-1^{\prime}(18 \%, 4$ steps $),[a]_{D}^{25}=$ $+19\left(c=0.16, \mathrm{CHCl}_{3}\right)\left\{\right.$ ref. $\left.2[a]_{\mathrm{D}}^{25}=+15.0\left(c=0.05, \mathrm{CHCl}_{3}\right)\right\}$. Other physical and spectral data of synthetic $(+)-\mathbf{1}^{\prime}$ were in good accord with those reported for the naturally occurring $\mathbf{1}^{\prime}$. The overall yield was 3.7% based on $\mathbf{5}$ in 19 steps.

Scheme 5 Synthesis of testudinariol $\mathrm{B}\left(\mathbf{1}^{\prime}\right)$. Reagents and conditions: (a) TBDMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (98%); (b) DDQ, aq. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (97%); (c) Dess-Martin periodinane, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (95%); (d) $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$, KHMDS, 18-crown-6, toluene, -78 to $-40^{\circ} \mathrm{C}(91 \%, E: Z=4: 6)$; (e) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (54%); (f) $\mathrm{Ms}_{2} \mathrm{O}, \mathrm{LiBr}, \mathrm{DMAP}, s$-collidine, DMF (64\%); (g) 19b, KHMDS, 18-crown-6, THF then 19a' (78\%); (h) $\mathrm{Na}-\mathrm{Hg}, \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{MeOH}$; (i) TBAF, THF (36%, 2 steps).

Conclusion

In conclusion, the first synthesis of testudinariols A (1) and B (1'), structurally and biosynthetically unusual triterpene alcohols isolated from the marine mollusc Pleurobrancus testudinarius, has been achieved by starting from (R)-glycidol. As a result, the proposed unique structures for $\mathbf{1}$ and $\mathbf{1}^{\prime}$ were proved to be correct.

Experimental

Mps are uncorrected. IR spectra were measured on a JASCO A-102 spectrometer or a JASCO FT/IR-460 spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at 90 MHz on a JEOL JNMEX 90A spectrometer, at 400 MHz on a JEOL JNM-LA400 spectrometer and at 500 MHz on a JEOL JNM-LA500 spec-
trometer. The peak for TMS, or CHCl_{3} in CDCl_{3} (at $\delta 7.26$) was used as the internal standard. Chemical shifts are reported in ppm on the δ scale and J-values are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at 100 MHz on a JEOL JNM-LA400 spectrometer and at 126 MHz on a JEOL JNM-LA500 spectrometer. The peak for CDCl_{3} (at $\delta 77.0$) was used as the internal standard. Optical rotations were taken with a JASCO DIP-1000 polarimeter or a JASCO P-1010 polarimeter. $[a]_{\text {D }}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Mass spectra were measured with a JEOL JMS-SX102A spectrometer. Column chromatography was carried out on Merck Kieselgel 60 Art 1.07734 unless otherwise stated. TLC analyses were performed on Merck silica gel plates 60 F-254.

(S)-1-(tert-Butyldimethylsilyloxy)hex-5-en-2-ol 6a

The known (S)-hex-5-ene-1,2-diol (5) was prepared from (R) glycidol (4). ${ }^{7}$ To a stirred solution of $5(8.87 \mathrm{~g}, 76.4 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(90 \mathrm{~cm}^{3}\right)$ were added TBDMSCl ($12.7 \mathrm{~g}, 84.3$ $\mathrm{mmol}), \mathrm{NEt}_{3}\left(13.8 \mathrm{~cm}^{3}, 99.0 \mathrm{mmol}\right)$ and DMAP ($930 \mathrm{mg}, 7.61$ mmol) at room temperature. After having been stirred at room temperature overnight, the reaction mixture was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give $\mathbf{6 a}(15.0 \mathrm{~g}, 85 \%)$ as a colourless oil, $n_{\mathrm{D}}{ }^{22} 1.4431$ (Found: C, $62.26 ; \mathrm{H}, 11.55 . \mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$ requires C, $62.55 ; \mathrm{H}, 11.37 \%) ;[a]_{\mathrm{D}}^{23}+8.33\left(c 1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3450 \mathrm{~m}(\mathrm{OH}), 1640 \mathrm{~m}(\mathrm{C}=\mathrm{C}), 1255 \mathrm{~s}\left(\mathrm{Si}^{\left.-\mathrm{CH}_{3}\right)} ; \delta_{\mathrm{H}}(90 \mathrm{MHz}\right.$; $\left.\mathrm{CDCl}_{3}\right) 0.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.35-1.65(2 \mathrm{H}$, $\left.\mathrm{m}, 3-\mathrm{H}_{2}\right), 2.01-2.38\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.40(1 \mathrm{H}, \mathrm{d}$ like, $J 2.4, \mathrm{OH})$, $3.26-3.81\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right.$ and $\left.2-\mathrm{H}\right), 4.88-5.19\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, $5.60-6.08(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$.

(S)-6-(tert-Butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)hex-1-ene 6b

To a stirred solution of $\mathbf{6 a}(1.00 \mathrm{~g}, 4.34 \mathrm{mmol})$ and 4-methoxybenzyl trichloroacetimidate ($1.84 \mathrm{~g}, 6.51 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}$ (20 $\left.\mathrm{cm}^{3}\right)$ was added $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}\left(3.8 \mathrm{~mm}^{3}, 43 \mu \mathrm{~mol}\right)$ at room temperature under Ar. After having been stirred at room temperature for 30 min , the reaction mixture was quenched with saturated aq. NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give recovered $\mathbf{6 a}(126 \mathrm{mg}, 13 \%)$ and $6 \mathbf{b}(1.19 \mathrm{~g}, 90 \%$ based on consumed $\mathbf{6 a}$) as a colourless oil, $n_{\mathrm{D}}{ }^{23} 1.4860$ (Found: C, 68.53; H, 9.61. $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires C, $68.52 ; \mathrm{H}, 9.78 \%) ;[a]_{\mathrm{D}}^{25}-22.9$ (c 1.00 in CHCl_{3}); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 1640w (C=C), 1610m (Ar), 1585w (Ar), 1510s (Ar), 1245s $\left(\mathrm{Si}_{\mathrm{CH}}^{3}\right) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.91(9 \mathrm{H}$, s, $\left.\mathrm{SiBu}^{t}\right), 1.48-1.76\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.00-2.34\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$, $3.30-3.88\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.6-\mathrm{H}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.47$ $(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{Ar}-\mathrm{CHH}), 4.65(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{Ar}-\mathrm{CHH}), 4.85-$ $5.14\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 5.59-6.06(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 6.78-6.97(2 \mathrm{H}$, d like, $J 8.8, m$-aromatic-H), 7.19-7.37 (2H, d like, $J 8.8$, o-aromatic-H).

Determination of the enantiomeric purity of $\mathbf{6 b}$

The enantiomeric purity of the synthesized $\mathbf{6 b}$ was estimated by HPLC analysis. HPLC analysis [column, Chiralcel ${ }^{\circledR}$ OD ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$); solvent, hexane-propan-2-ol = 10000: 1; flow rate, $0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; detection at 254 nm$]: \mathbf{6 b} t_{\mathrm{R}} / \mathrm{min} 23.3$ [$98.8 \%,(S)-\mathbf{6 b}], 27.4[1.2 \%,(R)-6 \mathbf{b}]$. The enantiomeric purity of $\mathbf{6 b}$ was estimated to be 97.6% ee.

(2RS,5S)-6-(tert-Butyldimethylsilyloxy)-5-(4-methoxybenzyl-oxy)hexane-1,2-diol 7

To a stirred solution of $\mathbf{6 b}(4.53 \mathrm{~g}, 12.9 \mathrm{mmol})$ in tert-butyl alcohol $\left(9.0 \mathrm{~cm}^{3}\right)$, acetone $\left(27 \mathrm{~cm}^{3}\right)$ and water $\left(9.0 \mathrm{~cm}^{3}\right)$ were
added N-methylmorpholine N-oxide (50% water; $4.0 \mathrm{~cm}^{3}$, 19.4 $\mathrm{mmol})$ and osmium(VIII) oxide ($1 \mathrm{~g} / 100 \mathrm{~cm}^{3}$ solution in tertbutyl alcohol; $7.0 \mathrm{~cm}^{3}, 0.28 \mathrm{mmol}$) at room temperature. After having been stirred at room temperature for 40 h , the reaction mixture was quenched with sodium sulfite heptahydrate, diluted with water and extracted with EtOAc. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give $7(4.59 \mathrm{~g}, 93 \%)$ as a colourless oil, $n_{\mathrm{D}}{ }^{23} 1.4970$ (Found: C, $62.25 ; \mathrm{H}, 9.29 . \mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}$ requires C, 62.46; H, 9.44\%); [a] ${ }_{\mathrm{D}}^{26}$ -24.3 (c 1.04 in CHCl_{3}); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3400 \mathrm{~s}(\mathrm{OH}), 1610 \mathrm{~m}$ (Ar), 1585w (Ar), 1515s (Ar), 1245s (Si-CH3); $\delta_{\mathrm{H}}(90 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.36-1.82(4 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{2}$ and $\left.4-\mathrm{H}_{2}\right), 2.41(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 3.30-3.96(6 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}_{2}, 2-\mathrm{H}, 5-\mathrm{H}$ and $\left.6-\mathrm{H}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.52(1 \mathrm{H}, \mathrm{d}$, J 11.3, $\operatorname{Ar}-\mathrm{C} H \mathrm{H}), 4.67(1 \mathrm{H}, \mathrm{d}, J 11.3$, $\operatorname{Ar}-\mathrm{C} H \mathrm{H}), 6.76-6.98$ (2 H , d like, $J 8.8, m$-aromatic-H), 7.15-7.36 (2H, d like, $J 8.8$, o-aromatic-H).

(S)-5-(tert-Butyldimethylsilyloxy)-4-(4-methoxybenzyloxy)pentanal 8

To a stirred mixture of $\mathrm{SiO}_{2}(30 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(180 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{NaIO}_{4}(4.92 \mathrm{~g}, 23.0 \mathrm{mmol})$ in water (30 cm^{3}) at room temperature. The mixture was stirred at room temperature for 10 min and then treated with a solution of 7 ($8.84 \mathrm{~g}, 23.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(90 \mathrm{~cm}^{3}\right)$. After having been stirred at room temperature for 6 h , the reaction mixture was filtered through Celite and the Celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After the filtrate and the washings were concentrated under reduced pressure, the residue was chromatographed on SiO_{2} to give $\mathbf{8}(7.92 \mathrm{~g}, 98 \%)$ as a colourless oil, $n_{\mathrm{D}}{ }^{23} 1.4896$ (Found: C, $64.82 ; \mathrm{H}, 9.02 . \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}$ requires C, $\left.64.73 ; \mathrm{H}, 9.15 \%\right)$; $[a]_{\mathrm{D}}^{27}$ -35.4 (c 1.03 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2730 \mathrm{w}(\mathrm{CHO}), 1725 \mathrm{~s}$ (C=O), $1615 \mathrm{~m}(\mathrm{Ar}), 1590 \mathrm{w}(\mathrm{Ar}), 1520 \mathrm{~s}(\mathrm{Ar}), 1250 \mathrm{~s}\left(\mathrm{Si}^{-\mathrm{CH}_{3}}\right)$; $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right)$, $1.56-2.10\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.49\left(2 \mathrm{H}, \mathrm{dt}\right.$ like, $J 7.2$ and $\left.1.8,2-\mathrm{H}_{2}\right)$, $3.30-3.88\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.41(1 \mathrm{H}$, d, $J 11.3, \mathrm{Ar}-\mathrm{C} H \mathrm{H}), 4.61(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{Ar}-\mathrm{C} H \mathrm{H}), 6.76-7.00$ (2 H , d like, $J 8.8, m$-aromatic-H), 7.14-7.39 (2H, d like, $J 8.8$, o-aromatic-H), $9.71(1 \mathrm{H}, \mathrm{t}, J 1.8, \mathrm{CHO})$.

Ethyl (S,E)-7-(tert-butyldimethylsilyloxy)-6-(4-methoxybenzyl-oxy)-2-(4'-methylpent-3'-enyl)hept-2-enoate 10a
To a stirred solution of ethyl 2-diethoxyphosphoryl-6-methyl-hept-5-enoate (9) ($452 \mathrm{mg}, 1.48 \mathrm{mmol}$) in dry toluene ($5.0 \mathrm{~cm}^{3}$) was added Bu^{+}OK ($166 \mathrm{mg}, 1.48 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$ under Ar. After the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min , a solution of $\mathbf{8}(378 \mathrm{mg}, 1.07 \mathrm{mmol})$ in dry toluene $\left(4.0 \mathrm{~cm}^{3}\right)$ was added dropwise. After having been stirred at $-20^{\circ} \mathrm{C}$ for 5 h , the resulting solution was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give 10a ($503 \mathrm{mg}, 93 \%, E: Z=5: 1$ as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis) as a colourless oil, $n_{\mathrm{D}}{ }^{24} 1.4924$ (Found: C, 69.16; H, 9.58. $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}$ requires C, $69.00 ; \mathrm{H}, 9.58 \%$); $[a]_{\mathrm{D}}^{26}-22.8$ (c 1.02 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1710 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1645 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1615 \mathrm{~m}$ (Ar), $1585 \mathrm{w}(\mathrm{Ar}), 1520 \mathrm{~s}(\mathrm{Ar}), 1250 \mathrm{~s}\left(\mathrm{Si}-\mathrm{CH}_{3}\right) ;(E)-\mathbf{1 0 a}: \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.29(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.51-1.73\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.58(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}-\mathrm{C}=\mathrm{C}_{c i s}\right), 1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {trans }}\right), 2.07\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right)$, $2.16-2.35\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right.$ and $\left.1^{\prime}-\mathrm{H}_{2}\right), 3.45(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.57(1 \mathrm{H}$, dd, $J 10.4$ and $\left.5.5,7-\mathrm{H}_{\mathrm{a}}\right), 3.70\left(1 \mathrm{H}\right.$, dd, $J 10.4$ and $\left.5.8,7-\mathrm{H}_{\mathrm{b}}\right)$, $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.18\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.47(1 \mathrm{H}$, d, $J 11.2, \operatorname{Ar}-\mathrm{C} H \mathrm{H}), 4.63(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{Ar}-\mathrm{C} H \mathrm{H}), 5.12(1 \mathrm{H}$, tdd, $J 7.4,1.5$ and $\left.1.2,3^{\prime}-\mathrm{H}\right), 6.72(1 \mathrm{H}, \mathrm{t}, J 7.3,3-\mathrm{H}), 6.84-$ 6.88 (2 H , d like, $J 8.9, m$-aromatic-H), $7.23-7.28$ (2 H , d like, $J 8.9, o$-aromatic-H); (Z)-10a: $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.06(6 \mathrm{H}$, s, SiMe_{2}), $0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}{ }^{t}\right), 1.28\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$,
$1.51-1.73\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{c i s}\right), 1.67(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {trans }}\right), 2.07\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.16-2.35\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.1^{\prime}-\mathrm{H}_{2}\right), 2.50\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{b}}\right), 3.45(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.57(1 \mathrm{H}, \mathrm{dd}$, $J 10.4$ and $\left.5.5,7-\mathrm{H}_{\mathrm{a}}\right), 3.70\left(1 \mathrm{H}\right.$, dd, $J 10.4$ and $\left.5.8,7-\mathrm{H}_{\mathrm{b}}\right), 3.80$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.18\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.47(1 \mathrm{H}, \mathrm{d}$, $J 11.2, \mathrm{Ar}-\mathrm{CHH}), 4.63(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{Ar}-\mathrm{CHH}), 5.08(1 \mathrm{H}, \mathrm{tdd}$, $J 7.4,1.5$ and $\left.1.2,3^{\prime}-\mathrm{H}\right), 5.80(1 \mathrm{H}, \mathrm{t}, J 7.3,3-\mathrm{H}), 6.84-6.88$ (2H, d like, $J 8.9, m$-aromatic-H), 7.23-7.28 (2H, d like, $J 8.9$, o-aromatic-H).

Ethyl (S,E)-7-hydroxy-6-(4-methoxybenzyloxy)-2-(4'-methyl-pent-3'-enyl)hept-2-enoate 10b

To a solution of $\mathbf{1 0 a}(2.47 \mathrm{~g}, 4.89 \mathrm{mmol}, E: Z=5: 1)$ in dry $\mathrm{MeOH}\left(26 \mathrm{~cm}^{3}\right)$ was added PPTS ($127 \mathrm{mg}, 0.511 \mathrm{mmol}$) at room temperature under Ar. After having been stirred at $40^{\circ} \mathrm{C}$ for 14 h , the resulting solution was quenched with saturated aq. NaHCO_{3} and extracted with EtOAc. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give $\mathbf{1 0 b}(1.90 \mathrm{~g}, 99 \%, E: Z=5: 1)$ as a colourless oil, $n_{\mathrm{D}}{ }^{15}$ 1.5156 (Found: C, 70.79; H, 8.87. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires C, 70.74; $\mathrm{H}, 8.78 \%) ;[a]_{\mathrm{D}}^{24}-2.15\left(c 1.04\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3470 \mathrm{~m}$ $(\mathrm{OH}), 1710 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1640 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1615 \mathrm{~m}(\mathrm{Ar}), 1585 \mathrm{w}(\mathrm{Ar})$, 1520s (Ar); $(E)-10 \mathrm{~b}: \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.44-2.58 ($8 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}, 5-\mathrm{H}_{2}, 1^{\prime}-\mathrm{H}_{2}$ and $2^{\prime}-\mathrm{H}_{2}$), $1.58\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {cis }}\right), 1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {trans }}\right), 3.33-3.85$ $\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}\right.$ and $\left.7-\mathrm{H}_{2}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.19(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.52\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{2}\right), 5.12\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.72$ ($1 \mathrm{H}, \mathrm{t}, J 7.5,3-\mathrm{H}$), 6.78-6.98 ($2 \mathrm{H}, \mathrm{d}$ like, $J 8.6, m$-aromatic-H), 7.19-7.38 (2 H , d like, J 8.6, o-aromatic-H); (Z)-10b: $\delta_{\mathrm{H}}(90$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.44-2.58(8 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}_{2}, 5-\mathrm{H}_{2}, 1^{\prime}-\mathrm{H}_{2}$ and $\left.2^{\prime}-\mathrm{H}_{2}\right), 1.58\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {cis }}\right.$), $1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {trans }}\right), 3.33-3.85\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}\right.$ and $\left.7-\mathrm{H}_{2}\right)$, $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.19\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.52(2 \mathrm{H}$, br s, Ar-CH2 $), 5.12\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.82(1 \mathrm{H}, \mathrm{t}, J 7.5,3-\mathrm{H}), 6.78-$ 6.98 (2 H , d like, $J 8.6, m$-aromatic-H), 7.19-7.38 (2 H , d like, $J 8.6, o$-aromatic-H).

Ethyl $(R)-2-\left[\left(2^{\prime} R, 5^{\prime} S\right)-5^{\prime}\right.$-(4-methoxybenzyloxy)tetrahydro-pyran-2'-yl]-6-methylhept-5-enoate 11a

To a stirred solution of $\mathbf{1 0 b}(7.02 \mathrm{~g}, 18.0 \mathrm{mmol}, E: Z=5: 1)$ in dry THF ($120 \mathrm{~cm}^{3}$) was added But OK ($202 \mathrm{mg}, 1.80 \mathrm{mmol}$) at $-10^{\circ} \mathrm{C}$ under Ar. After having been stirred at $4^{\circ} \mathrm{C}$ for 18 h , the resulting solution was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give a mixture of all of the possible diastereomers, 11a-d ($6.53 \mathrm{~g}, 93 \%$, 11a: 11b : 11c $: \mathbf{1 1 d}=5: 5: 2: 2$ as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis) as a colourless oil. The diastereomers were rechromatographed on spherical SiO_{2} [Silica Gel 60 N (spherical, neutral), $40-50 \mu \mathrm{~m}$, Kanto Chemical Co., Inc.] to give the desired 11a $(2.26 \mathrm{~g}, 32 \%)$ and the undesired isomers $\mathbf{1 1 b}-11 d(4.21 \mathrm{~g}, 60 \%)$. 11b-11d were converted to the initial mixture by treatment with $\mathrm{Bu}^{t} \mathrm{OK}\left(0.1 \mathrm{eq}\right.$.) at $4^{\circ} \mathrm{C}$ for 18 h . By repeating this process three times, 11a ($4.80 \mathrm{~g}, 68 \%$) was obtained as a colourless oil. Analytical samples of $\mathbf{1 1 b} \mathbf{- 1 1 d}$ were obtained by chromatographic separation of the diastereomers.

Compound 11a: a colourless oil, $n_{\mathrm{D}}{ }^{23} 1.5081$ (Found: C, $70.75 ; \mathrm{H}, 8.67 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires C, $\left.70.74 ; \mathrm{H}, 8.78 \%\right)$; $[a]_{\mathrm{D}}^{24}$ +19.6 (c 1.02 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1735 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1615 \mathrm{~m}$ (Ar), $1590 \mathrm{w}(\mathrm{Ar}), 1520 \mathrm{~s}(\mathrm{Ar}), 1250 \mathrm{~m}(\mathrm{C}-\mathrm{O}), 1100 \mathrm{~m}(\mathrm{C}-\mathrm{O})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30$ $\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$ or $\left.4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.37-1.47\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$ or $3^{\prime}-\mathrm{H}_{\mathrm{ax}}$), 1.53-1.70 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{b}}$), $1.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{c i s}\right), 1.67$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {trans }}\right), 1.82\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.93\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$, $2.17\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 2.38(1 \mathrm{H}$, ddd, $J 12.2,8.4$ and $3.8,2-\mathrm{H})$, $3.12\left(1 \mathrm{H}\right.$, dd, $J 10.7$ and $\left.10.4,6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 3.36-3.46\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$, $\left.5^{\prime}-\mathrm{H}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.04(1 \mathrm{H}$, ddd, $J 10.7,4.7$ and 2.3 ,
$\left.6^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 4.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.44(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{Ar}-$ $\mathrm{CHH}), 4.49(1 \mathrm{H}, \mathrm{d}, J 11.6$, Ar-CHH), $5.05(1 \mathrm{H}, \mathrm{tdd}, J 5.8,1.5$ and 1.2, 5-H), 6.82-6.89 (2H, d like, $J 8.6, m$-aromatic-H), 7.19$7.26\left(2 \mathrm{H}, \mathrm{d}\right.$ like, $J 8.6, o$-aromatic-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $14.2,17.6,25.6,25.7,27.9,28.6,29.9,51.1,55.2,60.2,70.4$, $70.8,72.3,78.5,113.7,123.3,129.1,130.5,132.4,159.1,174.3$.
Compound 11b: a colourless oil, $n_{\mathrm{D}}{ }^{23} 1.5028$ (Found: C, $70.87 ; \mathrm{H}, 9.02 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires C, $\left.70.74 ; \mathrm{H}, 8.78 \%\right)$; $[a]_{D}^{24}$ +5.64 (c 1.01 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1730 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1615 \mathrm{~m}$ (Ar), 1585w (Ar), 1515s (Ar), 1250m (C-O), 1100m (C-O); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.34-$ $1.48\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{c i s}\right), 1.61-$ $1.78\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and $\left.3^{\prime}-\mathrm{H}_{\text {eq }}\right), 1.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {trans }}\right), 1.95$ $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.16\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 2.41(1 \mathrm{H}$, ddd, $J 10.0,8.1$ and $4.2,2-\mathrm{H}), 3.13\left(1 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.10.5,6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 3.33(1 \mathrm{H}$, ddd, $J 10.0,8.1$ and $\left.2.0,2^{\prime}-\mathrm{H}\right), 3.40\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.79(3 \mathrm{H}, \mathrm{s}$, OMe), $4.06\left(1 \mathrm{H}\right.$, ddd, $J 11.0,4.6$ and $\left.2.2,6^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 4.14(2 \mathrm{H}, \mathrm{q}$, $\left.J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.44(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{Ar}-\mathrm{CHH}), 4.50(1 \mathrm{H}, \mathrm{d}$, $J 11.5$, Ar-CHH), 5.07 (1 H , tdd, $J 7.2,5.8$ and 1.3, $5-\mathrm{H}), 6.83-$ 6.89 (2 H , d like, J 8.6, m-aromatic-H), 7.21-7.26 (2H, d like, J 8.6, o-aromatic-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.2,17.6,25.7$, $25.9,28.0,29.1,29.8,50.7,55.2,60.3,70.4,70.9,72.5,77.9$, 113.8, 123.5, 129.2, 130.5, 132.2, 159.2, 173.9.

Compound 11c: a colourless oil, $n_{\mathrm{D}}{ }^{24} 1.5064$ (Found: C, $70.91 ; \mathrm{H}, 9.08 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires $\mathrm{C}, 70.74 ; \mathrm{H}, 8.78 \%$); $[a]_{\mathrm{D}}^{26}$ -1.48 (c 1.03 in CHCl_{3}); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 1725 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1610 \mathrm{~m}$ (Ar), 1585w (Ar), 1515s (Ar), 1245m (C-O), 1120m (C-O); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.34-$ $1.42\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.51-2.07\left(7 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}_{2}\right.$ and $4^{\prime}-\mathrm{H}_{\mathrm{eq}}$), $1.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{c i s}\right.$), 1.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {trans }}$), 2.52 $(1 \mathrm{H}, \mathrm{ddd}, J 10.6,8.6$ and $3.2,2-\mathrm{H}), 3.37\left(1 \mathrm{H}\right.$, br s, $\left.5^{\prime}-\mathrm{H}\right)$, 3.41 $\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.46\left(1 \mathrm{H}, \mathrm{dd}, J 12.0\right.$ and $\left.1.6,6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, OMe), $4.04\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.0,6^{\prime}-\mathrm{H}_{\mathrm{eq}}\right)$, $4.15(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{2}\right), 5.08(1 \mathrm{H}, \mathrm{t}$ like, $J 7.0$, $5-\mathrm{H})$, 6.83-6.89 (2 H , d like, J 8.4, m-aromatic-H), 7.24-7.30 (2H, d like, J 8.4, o-aromatic-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 14.3, 17.6, 24.7, 25.7, 25.8, 26.7, 29.0, 51.2, 55.2, 60.2, 69.5, 69.8, $70.0,77.9,113.7,123.8,129.1,130.7,131.9,159.0,174.2$.
Compound 11d: a colourless oil, $n_{\mathrm{D}}{ }^{24} 1.5085$ (Found: C, 70.81; H, 9.06. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$ requires C, $70.74 ; \mathrm{H}, 8.78 \%$); $[a]_{\mathrm{D}}^{28}$ -26.9 (c 1.04 in CHCl_{3}); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1}$ 1730s ($\mathrm{C}=\mathrm{O}$), 1610 m (Ar), 1585w (Ar), 1515s (Ar), 1250m (C-O), 1120m (C-O); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.44-1.78\left(5 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}_{2}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.57(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ $\mathrm{C}=\mathrm{C}_{\text {cis }}$), $1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {trans }}\right), 1.95(2 \mathrm{H}$, dt like, $J 8.4$ and $\left.7.2,4-\mathrm{H}_{2}\right), 2.04\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 2.53(1 \mathrm{H}$, ddd, $J 10.4,8.8$ and $4.1,2-\mathrm{H}), 3.36\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 3.44(1 \mathrm{H}, \mathrm{dd}, J 12.8$ and $\left.1.6,6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 3.52\left(1 \mathrm{H}\right.$, ddd, $J 10.4,8.8$ and $\left.1.6,2^{\prime}-\mathrm{H}\right), 3.80(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 4.02\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.8,6^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 4.16(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.46(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{Ar}-\mathrm{CHH}), 4.51(1 \mathrm{H}, \mathrm{d}$, $J 11.8, \operatorname{Ar}-\mathrm{C} H \mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{t}$ like, $J 7.6,5-\mathrm{H}), 6.82-6.89(2 \mathrm{H}$, d like, J 8.4, m-aromatic-H), 7.23-7.29 (2H, d like, J 8.4, o-aromatic-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.2,17.6,23.7,25.65$, $25.73,27.0,28.2,51.0,55.2,60.1,69.4,69.5,70.1,78.6,113.6$, 123.5, 129.1, 130.7, 132.3, 159.0, 174.7

Stereochemical assignment of 11a and 11b

Stereochemical assignment of the separated diastereomers 11a and 11b was established by ${ }^{1} \mathrm{H}$-NMR analysis at the stage of alcohol $\mathbf{1 4}$ after reduction of ester 11 .
To a stirred solution of $\mathbf{1 1 a}(11 \mathrm{mg}, 28 \mu \mathrm{~mol})$ in hexane $(0.5$ cm^{3}) was added DIBAL-H ($0.95 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $0.20 \mathrm{~cm}^{3}$, 0.19 mmol) at $-5^{\circ} \mathrm{C}$ under Ar. After having been stirred at $-5^{\circ} \mathrm{C}$ for 30 min , the resulting solution was quenched with MeOH . The mixture was filtered through Celite, and the filtrate was concentrated under reduced pressure. The residue was purified by PTLC to give $\mathbf{1 4 a}(7.6 \mathrm{mg}, 78 \%)$ as a colourless oil. In the same manner as described above, 11b was converted to 14b as a colourless oil.

Compound 14a: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $1.31-1.54$ ($5 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}, 3-\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{c i s}\right), 1.67$ ($3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {trans }}$), $1.76-1.84\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 2.00(2 \mathrm{H}, \mathrm{m}$, $\left.4-\mathrm{H}_{2}\right), 2.16-2.23\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 3.12(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and 10.5 , $\left.6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 3.28\left(1 \mathrm{H}\right.$, ddd, $J 10.8,6.4$ and $\left.2.0,2^{\prime}-\mathrm{H}\right), 3.43(1 \mathrm{H}, \mathrm{m}$, $\left.5^{\prime}-\mathrm{H}\right), 3.58\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.6.4,1-\mathrm{H}_{\mathrm{a}}\right), 3.77(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and $\left.2.7,1-\mathrm{H}_{\mathrm{b}}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.08(1 \mathrm{H}$, ddd, $J 10.5,4.6$ and $\left.2.2,6^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 4.45(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{Ar}-\mathrm{CHH}), 4.52(1 \mathrm{H}, \mathrm{d}, J 11.3$, $\mathrm{Ar}-\mathrm{CHH}), 5.07(1 \mathrm{H}, \mathrm{tdd}, J 7.1,1.5$ and 1.2, $5-\mathrm{H}), 6.84-6.91$ (2H, d like, $J 8.5, m$-aromatic-H), 7.21-7.27 (2H, d like, $J 8.5$, o-aromatic-H).

Compound 14b: $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $1.20-1.63$ ($5 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}_{2}$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{c i s}\right), 1.68(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {trans }}\right), 1.78(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.96\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.04(1 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.18-2.26\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 3.15(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and $\left.10.4,6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 3.41\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.48(1 \mathrm{H}$, dt like, $J 11.0$ and $\left.3.0,2^{\prime}-\mathrm{H}\right), 3.61\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{a}}\right), 3.70\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{\mathrm{b}}\right), 3.80$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.07\left(1 \mathrm{H}, \mathrm{ddd}, J 10.4,4.8\right.$ and $\left.2.4,6^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 4.46$ $(1 \mathrm{H}, \mathrm{d}, J 11.3, \operatorname{Ar}-\mathrm{C} H \mathrm{H}), 4.51(1 \mathrm{H}, \mathrm{d}, J 11.3, \operatorname{Ar}-\mathrm{C} H \mathrm{H})$, $5.08(1 \mathrm{H}, \mathrm{tdd}, J 7.0,1.5$ and $1.2,5-\mathrm{H}), 6.85-6.90(2 \mathrm{H}$, d like, $J 8.5, m$-aromatic-H), 7.21-7.29 (2H, d like, $J 8.5$, o-aromatic-H).

(R)-2-[($2^{\prime} R, 5^{\prime} S$)-5'-(4-Methoxybenzyloxy)tetrahydropyran-2'-yl]-6-methylhept-5-enal 12

To a stirred solution of $\mathbf{1 1 a}(1.60 \mathrm{~g}, 4.10 \mathrm{mmol})$ in dry toluene ($20 \mathrm{~cm}^{3}$) was added DIBAL-H ($1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ in toluene; 10.0 $\mathrm{cm}^{3}, 10.0 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ under Ar. After having been stirred at $-78^{\circ} \mathrm{C}$ for 3 h , the solution was quenched with MeOH at $-78^{\circ} \mathrm{C}$. After having been warmed to room temperature with vigorous stirring, the mixture was filtered through Celite and the Celite was washed with $\mathrm{Et}_{2} \mathrm{O}$. After the filtrate and the washings were concentrated under reduced pressure, the residue was chromatographed on SiO_{2} to give $\mathbf{1 2}(1.40 \mathrm{~g}$, 98%) as a colourless oil, $n_{\mathrm{D}}{ }^{23} 1.5169$ (Found: C, $72.51 ; \mathrm{H}, 8.49$. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C, $72.80 ; \mathrm{H}, 8.73 \%$); $[a]_{\mathrm{D}}^{24}+1.70$ (c 1.02 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2730 \mathrm{w}(\mathrm{CHO}), 1725 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1615 \mathrm{~m}$ (Ar), 1585w (Ar), 1515s (Ar), 1250m (C-O), 1090m (C-O); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.36-1.46\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right)$, $1.45-1.59\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{C}=\mathrm{C}_{c i s}\right), 1.67(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}-\mathrm{C}=\mathrm{C}_{\text {trans }}\right), 1.73\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{b}}\right), 1.78\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\text {eq }}\right), 1.97$ $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.17-2.29\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 3.11(1 \mathrm{H}$, dd, $J 10.6$ and $\left.10.6,6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 3.40\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.45-3.51(1 \mathrm{H}$, $\left.\mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.04(1 \mathrm{H}$, ddd, $J 10.6,4.8$ and 2.3 , $\left.6^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 4.42(1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{Ar}-\mathrm{CHH}), 4.50(1 \mathrm{H}, \mathrm{d}, J 11.5$, Ar-CHH), $5.04(1 \mathrm{H}$, tdd, $J 5.9,1.5$ and $1.2,5-\mathrm{H}), 6.84-6.89$ (2 H , d like, $J 8.7, m$-aromatic-H), $7.21-7.26$ ($2 \mathrm{H}, \mathrm{d}$ like, $J 8.7$, o-aromatic-H), $9.62(1 \mathrm{H}, \mathrm{d}, J 3.9, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 17.7, 25.4, 25.6, 26.4, 28.3, 29.9, 55.2, 56.1, 70.4, 70.9, 72.3, $77.4,113.8,123.2,129.2,130.4,132.8,159.2,204.3$.

($1 S, 2 S, 5 R$)-2-[($\left.2^{\prime} R, 5^{\prime} S\right)$-5'-(4-Methoxybenzyloxy)tetrahydro-pyran-2'-yl]-5-(1-methylethenyl)cyclopentanol 13a

To a stirred solution of $\mathbf{1 2}(820 \mathrm{mg}, 2.37 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(50 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Me}_{2} \mathrm{AlCl}\left(0.98 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane; 2.45 $\mathrm{cm}^{3}, 2.40 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$ under Ar. After having been stirred at $0^{\circ} \mathrm{C}$ for 30 min , the resulting solution was quenched with dil. aq. $\mathrm{HCl}\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give a mixture of all of the possible diastereomers, 13a-c 807 mg , 98%, 13a : 13b $: \mathbf{1 3} \mathbf{c}=6: 3: 1$ as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis) as a colourless oil. The diastereomers were rechromatographed on spherical SiO_{2} [Silica Gel 60 N (spherical, neutral), $40-50 \mu \mathrm{~m}$, Kanto Chemical Co., Inc.] to give the desired $\mathbf{1 3 a}(484 \mathrm{mg}, 59 \%)$ as a colourless oil and other isomers, 13b and 13c (inseparable mixtures; $313 \mathrm{mg}, 38 \%$) as a colourless
solid. An analytical sample of 13b was obtained by recrystallization from hexane as colourless plates.

Compound 13a: a colourless oil, $n_{\mathrm{D}}{ }^{25} 1.4505$ (Found: C, $72.69 ; \mathrm{H}, 8.59 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C, $\left.72.80 ; \mathrm{H}, 8.73 \%\right)$; $[a]_{\mathrm{D}}^{27}$ +7.16 (c 1.00 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3500 \mathrm{~m}(\mathrm{OH}), 1650 \mathrm{w}$ $(\mathrm{C}=\mathrm{C}), 1615 \mathrm{~m}(\mathrm{Ar}), 1590 \mathrm{w}(\mathrm{Ar}), 1520 \mathrm{~s}(\mathrm{Ar}), 1250 \mathrm{~s}(\mathrm{C}-\mathrm{O})$, $1095 \mathrm{~m}(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.14-1.23\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}\right)$, 1.29-1.46 $\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.63-1.72\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{a}}\right.$ and OH$), 1.74-1.80\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.3^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.83(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.83-1.94\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.3-\mathrm{H}_{\mathrm{b}}\right), 2.18(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 2.37(1 \mathrm{H}$, ddd, $J 11.6,5.8$ and $5.5,5-\mathrm{H}), 3.02(1 \mathrm{H}$, ddd, $J 10.7,8.6$ and $\left.1.9,2^{\prime}-\mathrm{H}\right), 3.14\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.10.5,6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right)$, $3.46\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.09(1 \mathrm{H}, \mathrm{ddd}, J 10.5,4.7$ and $\left.2.3,6^{\prime}-\mathrm{H}_{\text {eq }}\right), 4.14(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $2.3,1-\mathrm{H}), 4.46(1 \mathrm{H}$, d, $J 11.6, \operatorname{Ar}-\mathrm{C} H \mathrm{H}), 4.51(1 \mathrm{H}, \mathrm{d}, J 11.6, \operatorname{Ar}-\mathrm{C} H \mathrm{H}), 4.81(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.97\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 6.85-6.89(2 \mathrm{H}$, d like, $J 8.6, m$-aromatic-H), $7.22-7.28$ (2 H , d like, $J 8.6$, o-aromatic-H); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $23.3,26.8,27.1,29.1,30.1$, $52.0,52.9,55.2,70.4,70.7,72.8,74.6,80.2,112.2,113.8,129.2$, 130.6, 144.2, 159.2.

Compound 13b: colourless plates, $\mathrm{mp} 70.5-72.0^{\circ} \mathrm{C}$ (Found: C, $72.77 ; \mathrm{H}, 8.95 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C, $\left.72.80 ; \mathrm{H}, 8.73 \%\right) ;[a]_{\mathrm{D}}^{25}$ -0.98 (c 1.02 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3410 \mathrm{~s}(\mathrm{OH}), 1630 \mathrm{~m}$ (C=C), 1610s (Ar), 1585m (Ar), 1510s (Ar), 1245s (C-O); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.35\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.45\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right)$, $1.54\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.67-1.83\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.3^{\prime}-\mathrm{H}_{\mathrm{eq}}\right)$, $1.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.85-1.96\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.4-\mathrm{H}_{\mathrm{b}}\right)$, 2.14-2.22 $\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 2.42(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $8.3,5-\mathrm{H})$, $3.19\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.10.4,6^{\prime}-\mathrm{H}_{\text {ax }}\right), 3.39(1 \mathrm{H}$, ddd, $J 10.7,8.9$ and $\left.1.8,2^{\prime}-\mathrm{H}\right), 3.44\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.07$ $\left(1 \mathrm{H}\right.$, ddd, $J 10.7,4.7$ and $\left.2.4,6^{\prime}-\mathrm{H}_{\text {eq }}\right), 4.25(1 \mathrm{H}$, dd, $J 3.4$ and $3.4,1-\mathrm{H}), 4.46(1 \mathrm{H}, \mathrm{d}, J 11.3$, $\operatorname{Ar}-\mathrm{CHH}), 4.52(1 \mathrm{H}, \mathrm{d}$, J 11.3, $\mathrm{Ar}-\mathrm{C} H \mathrm{H}), 4.82\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 6.85-6.89(2 \mathrm{H}$, d like, $J 8.8$, m-aromatic-H), $7.22-7.28$ (2 H , d like, J 8.8, o-aromatic-H); $\delta_{\mathrm{C}}(126 \mathrm{MHz}$; CDCl_{3}) 23.3, 24.7, 24.8, 29.6, 30.1, 50.1, 52.4, 55.2, 70.4, 70.6, 72.5, 72.9, 77.7, 111.4, 113.8, 129.2, 130.6, 144.2, 159.2.
(1S,2S,5S)-2-[(2'R,5'S)-5'-(4-Methoxybenzyloxy)tetrahydro-pyran-2'-yl]-5-(1-methylethenyl)cyclopentanol 13c

To a stirred solution of $\mathbf{1 2}(1.40 \mathrm{~g}, 4.04 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($90 \mathrm{~cm}^{3}$) was added $\mathrm{SnCl}_{4}\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 4.0 \mathrm{~cm}^{3}, 4.0$ mmol) dropwise at $-78^{\circ} \mathrm{C}$ under Ar. After having been stirred at $-78^{\circ} \mathrm{C}$ for 15 min , the resulting solution was quenched with dil. aq. $\mathrm{HCl}\left(1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give a mixture of $\mathbf{1 3 a}$ and $\mathbf{1 3 c}(1.11 \mathrm{~g}, 80 \%, \mathbf{1 3 a}: \mathbf{1 3 c}=3: 7$, as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis) as a colourless oil. The mixture was rechromatographed on spherical SiO_{2} [Silica Gel 60 N (spherical, neutral), 40-50 $\mu \mathrm{m}$, Kanto Chemical Co., Inc.] to give 13a ($337 \mathrm{mg}, 24 \%$) and the desired $\mathbf{1 3 c}(774 \mathrm{mg}, 55 \%)$ as a colourless oil, $n_{\mathrm{D}}{ }^{23} 1.5171$ (Found: C, 72.66; H, 8.48. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C, $72.80 ; \mathrm{H}, 8.73 \%$); $[a]_{\mathrm{D}}^{27}+6.88$ (c 1.03 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3550 \mathrm{~s}(\mathrm{OH}), 1650 \mathrm{~m}(\mathrm{C}=\mathrm{C}), 1610 \mathrm{~s}(\mathrm{Ar}), 1585 \mathrm{~m}$ (Ar), 1510s (Ar), $1240 \mathrm{~m}(\mathrm{C}-\mathrm{O}), 1090 \mathrm{~m}(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.16-1.55\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}, 4-\mathrm{H}_{\mathrm{a}}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.72-$ $1.91\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.3^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right.$ $\left.\mathrm{C}-\mathrm{CH}_{3}\right), 2.12-2.20\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 2.46(1 \mathrm{H}, \mathrm{dt}, J 9.5$ and 9.5 , $5-\mathrm{H}), 3.18\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.10.5,6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 3.14-3.22(1 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}\right), 3.44\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.83(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $8.1,1-\mathrm{H}), 4.09\left(1 \mathrm{H}\right.$, ddd, $J 10.5,4.6$ and $\left.2.2,6^{\prime}-\mathrm{H}_{\text {eq }}\right), 4.46$ $(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{Ar}-\mathrm{CH} H), 4.52(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{Ar}-\mathrm{C} H \mathrm{H}), 4.79$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.86\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 6.84-6.91$ (2H, d like, $J 8.8, m$-aromatic-H), 7.22-7.28 (2H, d like, $J 8.8$, o-aromatic-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 20.1, 24.0, 26.6, 29.8, 29.9, $50.7,53.2,55.3,70.5,70.6,72.6,80.0,83.4,110.5,113.9,129.2$, 130.5, 145.8, 159.3.
($1 S, 2 R, 5 R$)-2-[($\left(^{\prime} R, 5^{\prime} S\right)$-5'-(4-Methoxybenzyloxy)tetrahydro-pyran- $\mathbf{2}^{\prime}$-yl]-1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane 15a

To a stirred solution of $\mathbf{1 3 a}(916 \mathrm{mg}, 2.64 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($15 \mathrm{~cm}^{3}$) were added 2,6-lutidine (2,6-dimethylpyridine) (0.62 $\left.\mathrm{cm}^{3}, 5.3 \mathrm{mmol}\right)$ and TBDMSOTf $\left(0.91 \mathrm{~cm}^{3}, 4.0 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$. After having been stirred at $0^{\circ} \mathrm{C}$ for 15 min , the resulting solution was added to water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give $\mathbf{1 5 a}(1.20 \mathrm{~g}, 99 \%)$ as a colourless oil, $n_{\mathrm{D}}^{25} 1.5031$ (Found: $\mathrm{C}, 70.31 ; \mathrm{H}, 9.70 . \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}$ requires C , $70.39 ; \mathrm{H}, 9.63 \%) ;[a]_{\mathrm{D}}^{26}+4.67\left(c 1.03\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ 1640w (C=C), 1610m (Ar), 1585w (Ar), 1515s (Ar), 1250s $\left(\mathrm{Si}^{-\mathrm{CH}_{3}}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01,0.03\left(6 \mathrm{H}\right.$, each s, $\left.\mathrm{SiMe}_{2}\right)$, $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.05-1.16\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.23\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ $\left.\mathrm{H}_{\mathrm{ax}}\right), 1.38\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.53-1.63\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.70-1.79$ $\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.79-1.92(3 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}$ and $\left.4-\mathrm{H}_{\mathrm{b}}\right), 2.10-2.22\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 2.89$ $\left(1 \mathrm{H}\right.$, ddd, $J 10.6,8.5$ and $\left.1.9,2^{\prime}-\mathrm{H}\right), 3.11(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $\left.10.5,6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 3.44\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.08(1 \mathrm{H}$, ddd, $J 10.5,4.8$ and $\left.2.3,6^{\prime}-\mathrm{H}_{\text {eq }}\right), 4.20(1 \mathrm{H}, \mathrm{d}, J 4.6,1-\mathrm{H}), 4.48$ $(1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{Ar}-\mathrm{CHH}), 4.52(1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{Ar}-\mathrm{CHH}), 4.69$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.77\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 6.84-6.91$ (2H, d like, $J 8.8, m$-aromatic-H), 7.22-7.30 (2H, d like, J 8.6, o-aromatic- H$) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-5.1,-4.1,18.1,23.1$, $25.8,26.4,27.0,28.7,30.3,52.2,53.7,55.2,70.3,70.6,73.1$, $75.9,80.1,110.8,113.8,129.1,130.7,144.6,159.1$.

($1 S, 2 R, 5 S)$-2-[($\left.2^{\prime} R, 5^{\prime} S\right)$-5'-(4-Methoxybenzyloxy)tetrahydro-pyran-2'-yl]-1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane 15a'

In the same manner as described above, 13c ($641 \mathrm{mg}, 1.85$ mmol) was converted to $\mathbf{1 5 a}$ ($832 \mathrm{mg}, 98 \%$) as a colourless oil, $n_{\mathrm{D}}{ }^{25} 1.5041$ (Found: C, $70.23 ; \mathrm{H}, 9.74 . \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{4}$ Si requires C, $70.39 ; \mathrm{H}, 9.63 \%) ;[a]_{\mathrm{D}}^{24}+28.9\left(c 1.04\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ filmm $) / \mathrm{cm}^{-1}$ 1650w (C=C), 1620m (Ar), 1595w (Ar), 1525s (Ar), 1260s $\left(\mathrm{Si}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00,0.02\left(6 \mathrm{H}\right.$, each s, $\left.\mathrm{SiMe}_{2}\right)$, $0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.29-1.49\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}, 4-\mathrm{H}_{\mathrm{a}}, 3-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.67-1.81\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.3^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.70(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.97(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.17-2.23\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{eq}}\right)$, $2.44(1 \mathrm{H}$, dt like, $J 8.3$ and $6.4,5-\mathrm{H}), 3.13(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and $10.4,6^{\prime}-\mathrm{H}_{\mathrm{ax}}$), $3.18\left(1 \mathrm{H}, \mathrm{ddd}, J 10.7,6.7\right.$ and $\left.1.8,2^{\prime}-\mathrm{H}\right), 3.45(1 \mathrm{H}$, $\left.\mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.94(1 \mathrm{H}, \mathrm{dd}, J 6.4$ and $6.1,1-\mathrm{H})$, $4.07\left(1 \mathrm{H}\right.$, ddd, $J 10.7,4.7$ and $\left.2.3,6^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 4.47(1 \mathrm{H}, \mathrm{d}, J 11.4$, Ar-CHH), $4.52(1 \mathrm{H}, \mathrm{d}, J 11.4, \operatorname{Ar}-\mathrm{CHH}), 4.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.75\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 6.85-6.89(2 \mathrm{H}$, d like, $J 8.9, m$-aromatic-H), $7.23-7.27$ (2 H , d like, $J 8.9$, o-aromatic-H); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.4,-4.1,18.1,20.3$, $25.0,26.0,27.3,28.5,30.2,52.3,55.3,56.3,70.4,70.8,73.0$, 78.7, 79.2, 111.1, 113.8, 129.2, 130.7, 146.2, 159.2.

(2R,5S)-2-[(1'S,2'R,5'R)-1'-(tert-Butyldimethylsilyloxy)-5'-(1-methylethenyl)-2'-cyclopentyl]tetrahydropyran-5-ol 15b

To a stirred mixture of $\mathbf{1 5 a}(195 \mathrm{mg}, 0.423 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(7.0 \mathrm{~cm}^{3}\right)$ and water $\left(0.7 \mathrm{~cm}^{3}\right)$ was added DDQ ($144 \mathrm{mg}, 0.635$ mmol) at $0^{\circ} \mathrm{C}$. After having been stirred at room temperature for 2 h , the mixture was quenched with saturated aq. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give 15b ($140 \mathrm{mg}, 97 \%$) as a colourless oil, $n_{\mathrm{D}}{ }^{24} 1.4812$ (Found: C, 66.83; $\mathrm{H}, 10.50 . \mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}$ requires C, $67.01 ; \mathrm{H}, 10.65 \%$); $[a]_{\mathrm{D}}^{29}-0.57$ (c 1.03 in CHCl_{3}); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3350 \mathrm{~s}(\mathrm{OH}), 1650 \mathrm{~m}(\mathrm{C}=\mathrm{C})$, $1255 \mathrm{~s}\left(\mathrm{Si}^{-\mathrm{CH}_{3}}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00,0.03(6 \mathrm{H}$, each s, $\left.\mathrm{SiMe}_{2}\right), 0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.06-1.16\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.24-1.41$ $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 1.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.56-1.63(1 \mathrm{H}$, $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.72-1.78\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{eq}}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right)$,
$1.81-1.93\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.09-2.18(2 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}_{\mathrm{eq}}$ and $\left.5^{\prime}-\mathrm{H}\right), 2.89(1 \mathrm{H}$, ddd, $J 10.4,8.6$ and $1.9,2-\mathrm{H}), 3.05$ $\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.10.1,6-\mathrm{H}_{\mathrm{ax}}\right), 3.69(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.99(1 \mathrm{H}$, ddd, $J 10.5,4.9$ and $2.5,6-\mathrm{H}_{\mathrm{eq}}$), $4.21\left(1 \mathrm{H}, \mathrm{d}, J 4.6,1^{\prime}-\mathrm{H}\right), 4.69$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.77\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.1,-4.2,18.1,23.1,25.8,26.5,27.1,28.7$, 33.1, 52.2, 53.6, 66.6, 72.7, 76.0, 79.8, 110.9, 144.5.

(2R,5S)-2-[(1'S,2'R,5'S)-1'-(tert-Butyldimethylsilyloxy)-5'-(1-methylethenyl)-2'-cyclopentyl]tetrahydropyran-5-ol 15b

In the same manner as described above, $\mathbf{1 5 a}^{\mathbf{\prime}}$ ($753 \mathrm{mg}, 1.63$ mmol) was converted to $\mathbf{1 5 b}^{\prime}(541 \mathrm{mg}, 97 \%)$ as a colourless oil, $n_{\mathrm{D}}{ }^{23} 1.4811$ (Found: C, $66.89 ; \mathrm{H}, 10.59 . \mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}$ requires C, $67.01 ; \mathrm{H}, 10.65 \%) ;[a]_{\mathrm{D}}^{26}+25.6\left(c 1.04\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3400s $(\mathrm{OH}), 1640 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1250 \mathrm{~m}\left(\mathrm{Si}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.00,0.02\left(6 \mathrm{H}\right.$, each s, SiMe_{2}), $0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.31-$ $1.50\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{ax}}, 4-\mathrm{H}_{\mathrm{ax}}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.54(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $1.65-1.83\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\text {eq }}, 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right.$ $\left.\mathrm{C}-\mathrm{CH}_{3}\right), 1.97\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.10-2.18\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{eq}}\right), 2.44$ $\left(1 \mathrm{H}\right.$, dt like, $J 8.3$ and $\left.6.5,5^{\prime}-\mathrm{H}\right), 3.06(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and 10.4 , $\left.6^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 3.16(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.96(1 \mathrm{H}, \mathrm{dd}$, $J 6.5$ and $\left.6.1,1^{\prime}-\mathrm{H}\right), 3.99\left(1 \mathrm{H}\right.$, ddd, $J 10.7,4.8$ and $\left.2.3,6-\mathrm{H}_{\mathrm{eq}}\right)$, $4.74\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHH}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.75\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.4,-4.2,18.0,20.4,25.2,25.9,27.4$, $28.5,33.0,52.3,56.4,66.5,72.8,78.7,78.9,111.0,146.2$.

(R)-2-[($\left.\mathbf{1}^{\prime} S, 2^{\prime} R, 5^{\prime} R\right)-1^{\prime}$-(tert-Butyldimethylsilyloxy)-5'-(1-methylethenyl)-2'-cyclopentyl]tetrahydropyran-5-one 16

To a stirred solution of $\mathbf{1 5 b}(127 \mathrm{mg}, 0.373 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(4.5 \mathrm{~cm}^{3}\right)$ were added the Dess-Martin periodinane (209 mg , 0.496 mmol) and three drops of pyridine at $0^{\circ} \mathrm{C}$. After having been stirred at room temperature for 40 min , the resulting mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and then were added saturated aq. NaHCO_{3} and saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ with vigorous stirring. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was then washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give $16(118 \mathrm{mg}, 94 \%)$ as a colourless oil, $n_{\mathrm{D}}{ }^{24} 1.4785$ (Found: C, 67.25; H, 10.09. $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires C, $67.40 ; \mathrm{H}$, 10.12%); $[a]_{\mathrm{D}}^{29}+19.5$ (c 1.03 in CHCl_{3}); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1725 \mathrm{~s}$ $(\mathrm{C}=\mathrm{O}), 1645 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1255 \mathrm{~m}\left(\mathrm{Si}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $-0.01,0.03$ (6 H , each s, SiMe_{2}), 0.82 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}$), $1.09-1.20$ $\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.58-1.68\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right.$ $\left.\mathrm{C}-\mathrm{CH}_{3}\right), 1.76-1.86\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{ax}}\right), 1.86-1.98\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 1.98-2.06\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.06-2.13\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{eq}}\right), 2.18$ (1 H , ddd, $J 10.9,5.8$ and $\left.4.9,5^{\prime}-\mathrm{H}\right), 2.41$ (1 H , ddd, $J 16.8,11.3$ and $\left.6.8,4-\mathrm{H}_{\mathrm{a}}\right), 2.58\left(1 \mathrm{H}\right.$, dddd, $J 16.8,4.0,4.0$ and $\left.1.5,4-\mathrm{H}_{\mathrm{b}}\right)$, $3.32(1 \mathrm{H}$, ddd, $J 12.2,9.8$ and $3.0,2-\mathrm{H}), 3.93(1 \mathrm{H}, \mathrm{d}, J 16.4$, $\left.6-\mathrm{H}_{\mathrm{a}}\right), 4.14\left(1 \mathrm{H}\right.$, dd, $J 16.4$ and $\left.1.5,6-\mathrm{H}_{\mathrm{b}}\right), 4.26(1 \mathrm{H}, \mathrm{d}, J 4.9$, $\left.1^{\prime}-\mathrm{H}\right), 4.71\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.79(1 \mathrm{H}$, br s, $\mathrm{C} H \mathrm{H}=$ $\left.\mathrm{C}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-5.1,-4.2,18.0,23.1,25.8$, $26.5,27.0,28.2,37.0,52.2,53.5,74.1,75.9,78.4,111.1,144.0$, 208.6 .

(R) $-2-\left[\left(1^{\prime} S, 2^{\prime} R, 5^{\prime} S\right)-1^{\prime}\right.$-(tert-Butyldimethylsilyloxy)-5'-(1-methylethenyl)-2'-cyclopentyl]tetrahydropyran-5-one 16'

In the same manner as described above, $\mathbf{1 5 b}^{\prime}(222 \mathrm{mg}, 0.652$ mmol) was converted to $\mathbf{1 6}^{\prime}(211 \mathrm{mg}, 95 \%)$ as a colourless oil, $n_{\mathrm{D}}{ }^{23} 1.4780$ (Found: C, 67.21; H, 10.07. $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires C, $67.40 ; \mathrm{H}, 10.12 \%) ;[a]_{\mathrm{D}}^{24}+46.5\left(c 1.02\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ $1725 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1645 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1250 \mathrm{~m}\left(\mathrm{Si}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.01,0.02\left(6 \mathrm{H}\right.$, each s, SiMe_{2}), $0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.39-$ $1.48\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.48-1.57\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.72(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.79-1.94\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{ax}}, 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.02-$ $2.12\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{eq}}\right.$ and $\left.2^{\prime}-\mathrm{H}\right), 2.38-2.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 2.60\left(1 \mathrm{H}, \mathrm{dt}\right.$ like, $J 16.8$ and $\left.4.3,4-\mathrm{H}_{\mathrm{b}}\right), 3.55(1 \mathrm{H}$, ddd, $J 10.4,7.3$ and $3.1,2-\mathrm{H}), 3.91\left(1 \mathrm{H}, \mathrm{d}, J 16.5,6-\mathrm{H}_{\mathrm{ax}}\right), 4.07(1 \mathrm{H}$, dd, $J 5.8$ and $\left.5.5,1^{\prime}-\mathrm{H}\right), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J 16.5\right.$ and $\left.1.7,6-\mathrm{H}_{\mathrm{eq}}\right)$,
4.74-4.78 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.5$, -4.1, 18.0, 20.6, 25.6, 25.9, 27.6, 28.6, 37.1, 52.5, 56.4, 74.2, 77.6, 78.6, 111.0, 146.0, 208.6.

Methyl (Z)-2-\{(R)-2'-[(1"S,2"R,5"R)-1"-(tert-butyldimethyl-silyloxy)-5"-(1-methylethenyl)-2"-cyclopentyl]tetrahydropyran-5'-ylidene\} acetate 18a

To a stirred solution of (S) - $\mathbf{1 7}$ (dried azeotropically with toluene; $136 \mathrm{mg}, 0.337 \mathrm{mmol}$) in dry THF $\left(2.0 \mathrm{~cm}^{3}\right)$ was added NaHMDS ($1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF; $310 \mathrm{~mm}^{3}, 0.31 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under Ar. After the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 40 min , a solution of $16(19 \mathrm{mg}, 56 \mu \mathrm{~mol})$ in dry THF ($1.0 \mathrm{~cm}^{3}$) was added dropwise. After having been stirred at $-20^{\circ} \mathrm{C}$ for 24 h , the resulting solution was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give 18a $(20 \mathrm{mg}, 91 \%, E: Z=c a .1: 5$ as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis) as a colourless oil, $n_{\mathrm{D}}{ }^{24}$ 1.4889 (Found: C, 67.07; H, 9.69. $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4}$ Si requires C, 66.96; $\mathrm{H}, 9.71 \%) ;[\alpha]_{\mathrm{D}}^{28}+18.8\left(c 1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1720$ s $(\mathrm{C}=\mathrm{O}), 1660 \mathrm{~m}(\mathrm{C}=\mathrm{C}), 1650 \mathrm{~m}(\mathrm{C}=\mathrm{C}), 1255 \mathrm{~m}\left(\mathrm{Si}-\mathrm{CH}_{3}\right) ;(Z)-18 \mathrm{a}:$ $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00,0.03\left(6 \mathrm{H}\right.$, each s, $\left.\mathrm{SiMe}_{2}\right), 0.82(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiBu}^{t}\right), 1.06-1.18\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 1.48\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.55-$ $1.65\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 1.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.80-1.99(4 \mathrm{H}$, $\mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}, 2^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 2.16(1 \mathrm{H}$, ddd, $J 10.6$, 5.6 and $\left.4.9,5^{\prime \prime}-\mathrm{H}\right), 2.30-2.41\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.46(1 \mathrm{H}$, dt like, $J 14.4$ and $\left.4.4,4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.11\left(1 \mathrm{H}\right.$, ddd, $J 10.9,8.6$ and $\left.2.8,2^{\prime}-\mathrm{H}\right)$, $3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.01\left(1 \mathrm{H}\right.$, br d, $\left.J 15.1,6^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.23(1 \mathrm{H}$, d, $\left.J 4.9,1^{\prime \prime}-\mathrm{H}\right), 4.69\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHH}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.78(1 \mathrm{H}$, br s, $\left.\mathrm{CHH}=\mathrm{C}-\mathrm{CH}_{3}\right), 5.46\left(1 \mathrm{H}, \mathrm{d}, J 15.1,6^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.66(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-5.1,-4.1,18.1,23.1,25.8,26.1,26.9$, $30.1,32.6,51.1,52.2,53.7,66.9,75.9,79.2,110.9,114.0,144.4$, 157.4, 166.3; $(E)-18 \mathbf{a}: \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.01,0.02(6 \mathrm{H}$, each s, SiMe_{2}), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.08-1.19\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right)$, $1.40\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.57-1.64\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 1.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.82-1.96\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}, 2^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 2.12-2.21\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 3.17(1 \mathrm{H}$, ddd, $J 10.6,8.9$ and $\left.1.7,2^{\prime}-\mathrm{H}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.81(1 \mathrm{H}$, br d, $\left.J 14.9,4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.02\left(1 \mathrm{H}, \mathrm{d}, J 13.1,6^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.15(1 \mathrm{H}, \mathrm{dd}, J 13.1$ and 1.2, $\left.6^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.22\left(1 \mathrm{H}, \mathrm{d}, J 4.3,1^{\prime \prime}-\mathrm{H}\right), 4.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=$ $\left.\mathrm{C}-\mathrm{CH}_{3}\right), 4.78\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 5.68(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $-5.1,-4.1,18.1,23.1,25.8,26.3,26.6,27.0$, $30.2,51.1,52.2,53.7,72.9,75.8,80.4,110.9,113.9,144.4,156.1$, 166.8.

Methyl (Z)-2-\{(R)-2'-[(1"S,2"R,5"S)-1"-(tert-butyldimethyl-silyloxy)-5"-(1-methylethenyl)-2"-cyclopentyl]tetrahydropyran-5^{\prime}-ylidene) \}acetate 18a'

To a stirred mixture of $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}(103 \mathrm{mg}$, 0.324 mmol) and 18 -crown-6 (recrystallized MeCN complex; ${ }^{19}$ $243 \mathrm{mg}, 0.796 \mathrm{mmol}$) in dry toluene $\left(4.0 \mathrm{~cm}^{3}\right)$ was added KHMDS ($0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in toluene; $0.64 \mathrm{~cm}^{3}, 0.32 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under Ar. After the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , a solution of $\mathbf{1 6}^{\prime}(54 \mathrm{mg}, 0.16 \mathrm{mmol})$ in dry toluene ($2.0 \mathrm{~cm}^{3}$) was added dropwise. After having been stirred at $-40^{\circ} \mathrm{C}$ for 20 h , the resulting solution was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give 18a' ($57 \mathrm{mg}, 91 \%, E: Z=c a .4: 6$ as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis) as a colourless oil, $n_{\mathrm{D}}{ }^{23}$ 1.4878 (Found: C, 66.99; H, 9.86. $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4}$ Si requires C, 66.96; $\mathrm{H}, 9.71 \%) ;[\alpha]_{\mathrm{D}}^{28}+44.8\left(c 1.03\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1720 \mathrm{~s}$ $(\mathrm{C}=\mathrm{O}), 1660 \mathrm{~m}(\mathrm{C}=\mathrm{C}), 1255 \mathrm{~m}\left(\mathrm{Si}-\mathrm{CH}_{3}\right) ;(Z)-18 \mathrm{a}^{\prime}: \delta_{\mathrm{H}}(500 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 0.00,0.03\left(6 \mathrm{H}\right.$, each $\left.\mathrm{s}, \mathrm{SiMe}_{2}\right), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right)$, $1.38-1.63\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 1.71(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.75-1.85\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 2.01$ $\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right), 2.37\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.41-2.50\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right.$
and $\left.5^{\prime \prime}-\mathrm{H}\right), 3.36\left(1 \mathrm{H}\right.$, ddd, $J 10.4,7.3$ and $\left.3.1,2^{\prime}-\mathrm{H}\right), 3.69(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.97-4.05\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.1^{\prime \prime}-\mathrm{H}\right), 4.74(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHH}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.76\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH} \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 5.46(1 \mathrm{H}$, d, $\left.J 15.0,6^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.66(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ;(E)-18 \mathbf{a}^{\prime}: \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.01,0.02\left(6 \mathrm{H}\right.$, each $\left.\mathrm{s}, \mathrm{SiMe}_{2}\right), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.38-1.63$ $\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 1.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right)$, $1.75-1.85\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\text {eq }}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 2.01\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right)$, $2.17\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.41-2.50\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-\mathrm{H}\right), 3.43(1 \mathrm{H}$, ddd, $J 11.0,7.1$ and $\left.2.2,2^{\prime}-\mathrm{H}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.82(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.97-4.05\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.1^{\prime \prime}-\mathrm{H}\right), 4.14(1 \mathrm{H}, \mathrm{dd}, J 13.1$ and $\left.1.8,6^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.76(1 \mathrm{H}$, br s, $\left.\mathrm{CHH}=\mathrm{C}-\mathrm{CH}_{3}\right), 5.68(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ;(Z)-$ and $(E)-18 \mathbf{a}^{\prime}: \delta_{\mathrm{C}}(126$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.4,-4.2,-4.1,18.0,20.46,20.51,25.15$, $25.19,25.9,26.5,28.5,28.6,29.2,29.3,32.6,51.08,51.11,52.6$, 52.7, 56.40, 56.44, 67.1, 73.0, 78.2, 78.50, 78.54, 79.5, 110.97, 111.01, 113.97, 114.02, 146.13, 146.14, 156.0, 157.3, 166.3, 166.8 .

(Z)-2-\{(R)-2'-[(1"S,2"R,5"R)-1"-(tert-Butyldimethylsilyloxy)-5"-(1-methylethenyl)-2"-cyclopentyl]tetrahydropyran-5'-ylidene\}ethanol 18b

To a stirred solution of 18a ($E: Z=c a .1: 5 ; 182 \mathrm{mg}, 0.461$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3.5 \mathrm{~cm}^{3}\right.$) was added DIBAL-H (1.01 mol dm^{-3} in toluene; $1.37 \mathrm{~cm}^{3}, 1.38 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ under Ar. After having been warmed to $0^{\circ} \mathrm{C}$ with stirring for 3 h , the resulting solution was quenched with MeOH at $0^{\circ} \mathrm{C}$ and warmed to room temperature with vigorous stirring. The mixture was filtered through Celite and the Celite was washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate and the washings were concentrated under reduced pressure, and the residue was chromatographed on spherical SiO_{2} [Silica Gel 60 N (spherical, neutral), 40-50 $\mu \mathrm{m}$, Kanto Chemical Co., Inc.] to give the desired $\mathbf{1 8 b}$ (131 mg , 78%) as a colourless solid and its (E)-isomer ($25 \mathrm{mg}, 15 \%$) as a colourless oil. An analytical sample of $\mathbf{1 8 b}$ was obtained by recrystallization from hexane as colourless needles, mp 70.0$72.0^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 68.55 ; \mathrm{H}, 10.63 . \mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}$ requires C , $68.80 ; \mathrm{H}, 10.45 \%) ;[\alpha]_{\mathrm{D}}^{23}+8.14\left(c 1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3280 \mathrm{~m}(\mathrm{OH}), 1650 \mathrm{~m}(\mathrm{C}=\mathrm{C}), 1250 \mathrm{~s}\left(\mathrm{Si}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.00,0.03\left(6 \mathrm{H}\right.$, each s, $\left.\mathrm{SiMe}_{2}\right), 0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.09-$ $1.20\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 1.37\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.60\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right)$, $1.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.73-1.81\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}=\mathrm{C}-\mathrm{C}_{3}\right), 1.82-1.96\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 2.16$ $\left(1 \mathrm{H}\right.$, ddd, $J 10.8,5.8$ and $\left.5.2,5^{\prime \prime}-\mathrm{H}\right), 2.22-2.30\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$, $2.32-2.38\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.09(1 \mathrm{H}$, ddd, $J 10.4,8.6$ and 1.9 , $\left.2^{\prime}-\mathrm{H}\right), 3.75\left(1 \mathrm{H}, \mathrm{d}, J 13.1,6^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.07(1 \mathrm{H}$, ddd, $J 12.4,6.4$ and $\left.1.5,1-\mathrm{H}_{\mathrm{a}}\right), 4.21\left(1 \mathrm{H}\right.$, br d, $\left.J 5.8,1^{\prime \prime}-\mathrm{H}\right), 4.22(1 \mathrm{H}, \mathrm{dd}, J 12.4$ and $\left.7.9,1-\mathrm{H}_{\mathrm{b}}\right), 4.60\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 13.1,6^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.69(1 \mathrm{H}, \mathrm{s}, \mathrm{CHH}=$ $\left.\mathrm{C}-\mathrm{CH}_{3}\right), 4.77\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH} \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 5.44(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $6.4,2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-5.0,-4.1,18.0,23.1,25.8$, $26.1,26.9,31.2,33.0,52.2,53.7,58.1,66.2,75.9,80.4,110.9$, 122.6, 138.0, 144.5; (E)-isomer: $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00,0.03$ $\left(6 \mathrm{H}\right.$, each s, $\left.\mathrm{SiMe}_{2}\right), 0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.08-1.19\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\right.$ $\left.\mathrm{H}_{\mathrm{a}}\right), 1.30\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.56-1.64\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 1.74-1.82$ $\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.82-1.96(3 \mathrm{H}, \mathrm{m}$, $2^{\prime \prime}-\mathrm{H}, 33^{\prime \prime}-\mathrm{H}_{\mathrm{b}}$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 2.01(1 \mathrm{H}$, dd like, $J 14.3$ and 14.3, $\left.4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.16\left(1 \mathrm{H}\right.$, ddd, $J 10.7,5.8$ and $\left.4.9,5^{\prime \prime}-\mathrm{H}\right), 2.72(1 \mathrm{H}$, ddd like, $J 14.3,2.1$ and $\left.1.9,4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.10(1 \mathrm{H}$, ddd, $J 10.5,8.7$ and $\left.2.0,2^{\prime}-\mathrm{H}\right), 3.94\left(1 \mathrm{H}, \mathrm{d}, J 12.5,6^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.12(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and $\left.1.9,6^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.15\left(1 \mathrm{H}\right.$, dd, $J 12.2$ and $\left.6.7,1-\mathrm{H}_{\mathrm{a}}\right), 4.22(1 \mathrm{H}$, br d, $\left.J 4.9,1^{\prime \prime}-\mathrm{H}\right), 4.22\left(1 \mathrm{H}\right.$, dd, $J 12.2$ and $\left.7.0,1-\mathrm{H}_{\mathrm{b}}\right), 4.69(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CHH}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.77\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 5.49(1 \mathrm{H}$, dd, $J 7.0$ and $6.7,2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-5.1,-4.1,18.1$, $23.1,25.7,25.8,26.3,27.0,30.6,52.2,53.8,58.3,73.5,75.9$, 80.5, 110.9, 122.3, 138.2, 144.6.

(Z)-2-\{(R)-2'-[(1"S,2"R,5"S)-1"-(tert-Butyldimethylsilyloxy)-5"-(1-methylethenyl)-2"-cyclopentyl]tetrahydropyran-5'-ylidene\}ethanol 18b ${ }^{\prime}$

In the same manner as described above, $\mathbf{1 8 a}^{\prime}(E: Z=c a .4: 6$;
$54 \mathrm{mg}, 0.14 \mathrm{mmol}$) was converted to the desired $\mathbf{1 8 b}^{\prime}(27 \mathrm{mg}$, 54%) as a colourless oil and its (E)-isomer ($20 \mathrm{mg}, 40 \%$) as a colourless oil. 18b': a colourless oil, $n_{\mathrm{D}}{ }^{20} 1.4949$ (Found: C, 68.52; $\mathrm{H}, 10.37 . \mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{3}$ Si requires $\left.\mathrm{C}, 68.80 ; \mathrm{H}, 10.45 \%\right)$; $[a]_{\mathrm{D}}^{23}$ $+40.9\left(c 1.04\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3370 \mathrm{~m}(\mathrm{OH}), 1645 \mathrm{~m}$ $(\mathrm{C}=\mathrm{C}), 1250 \mathrm{~s}\left(\mathrm{Si}^{-} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00,0.02(6 \mathrm{H}$, each s, SiMe_{2}), $0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.37-1.52\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$, $3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 1.62-1.83\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right)$, $1.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right), 2.00\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\right.$ H), 2.21-2.32 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}$), 2.33-2.40 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}$), 2.44 $\left(1 \mathrm{H}\right.$, dt like, $J 8.0$ and $\left.6.4,5^{\prime \prime}-\mathrm{H}\right), 3.37(1 \mathrm{H}$, ddd, $J 11.0,6.6$ and $\left.1.9,2^{\prime}-\mathrm{H}\right), 3.75\left(1 \mathrm{H}, \mathrm{d}, J 13.0,6^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.95(1 \mathrm{H}, \mathrm{dd}, J 6.4$ and $\left.6.4,1^{\prime \prime}-\mathrm{H}\right), 4.06\left(1 \mathrm{H}\right.$, ddd, $J 12.4,6.3$ and $\left.1.4,1-\mathrm{H}_{\mathrm{a}}\right), 4.21(1 \mathrm{H}$, dd, $J 12.4$ and $\left.7.6,1-\mathrm{H}_{\mathrm{b}}\right), 4.60\left(1 \mathrm{H}\right.$, dd, $J 13.0$ and $\left.1.4,6^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$, $4.74\left(1 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right)$, $5.45(1 \mathrm{H}$, dd, $J 7.6$ and $6.3,2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.3$, $-4.1,18.0,20.4,24.8,25.9,28.5,30.0,33.0,52.5,56.3,58.1$, $66.3,78.5,79.4,111.1,122.7,138.0,146.1 ;(E)$-isomer: $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00,0.02\left(6 \mathrm{H}\right.$, each s, $\left.\mathrm{SiMe}_{2}\right), 0.85(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiBu}^{t}\right), 1.32-1.51\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 1.66-1.83$ $\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.4^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right)$, $1.95-2.08\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.2^{\prime \prime}-\mathrm{H}\right), 2.44(1 \mathrm{H}$, dt like, $J .6$ and $\left.6.3,5^{\prime \prime}-\mathrm{H}\right), 2.74\left(1 \mathrm{H}\right.$, ddd like, J 14.2, 2.2 and $\left.1.7,4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.38$ (1 H , ddd, $J 11.0,6.8$ and 1.7, $2^{\prime}-\mathrm{H}$), $3.95\left(1 \mathrm{H}, \mathrm{d}, J 12.4,6^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$, $3.97\left(1 \mathrm{H}, \mathrm{dd}, J 6.3\right.$ and $\left.6.3,1^{\prime \prime}-\mathrm{H}\right), 4.12(1 \mathrm{H}, \mathrm{dd}, J 12.4$ and 1.7 , $\left.6^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J 12.4\right.$ and $\left.6.8,1-\mathrm{H}_{\mathrm{a}}\right), 4.22(1 \mathrm{H}, \mathrm{dd}, J 12.4$ and $\left.7.1,1-\mathrm{H}_{\mathrm{b}}\right), 4.74\left(1 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.76(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 5.49(1 \mathrm{H}, \mathrm{dd}, J 7.1$ and $6.8,2-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)-4.3,-4.1,18.0,20.5,25.1,25.7,26.0,28.6,29.5,52.7$, 56.4, 58.3, 73.6, 78.6, 79.5, 110.9, 122.5, 138.2, 146.3.

$(1 S, 2 R, 5 R)-2-\left[\left(2^{\prime} R, 5^{\prime} Z\right)-5^{\prime}\right.$-($2^{\prime \prime}$-Bromoethylidene)-tetrahydro-pyran- $\mathbf{2}^{\prime}$-yl]-1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane 19a

To a stirred solution of $\mathbf{1 8 b}(101 \mathrm{mg}, 0.275 \mathrm{mmol})$ in DMF (6.0 cm^{3}) were added $\operatorname{LiBr}(103 \mathrm{mg}, 1.18 \mathrm{mmol})$, s-collidine ($2,4,6$-trimethylpyridine) ($145 \mathrm{~mm}^{3}, 1.10 \mathrm{mmol}$) and DMAP ($c a .3 \mathrm{mg}$) at $0^{\circ} \mathrm{C}$ under Ar. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then treated with $\mathrm{Ms}_{2} \mathrm{O}$ (recrystallized from dry $\mathrm{Et}_{2} \mathrm{O} ; 192 \mathrm{mg}$, 1.10 mmol). After having been stirred at $4^{\circ} \mathrm{C}$ for 24 h , saturated aq. NaHCO_{3} was added to the mixture, then it was diluted with water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give recovered 18b ($18 \mathrm{mg}, 18 \%$) and unstable $\mathbf{1 9 a}$ ($90 \mathrm{mg}, 93 \%$ based on consumed 18b) as a pale yellow oil. This oil was employed immediately for the next steps.

($1 S, 2 R, 5 S)-2-\left[\left(2^{\prime} R, 5^{\prime} Z\right)-5^{\prime}\right.$-($2^{\prime \prime}$-Bromoethylidene)-tetrahydro-

 pyran-2'-yl]-1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane 19a'In the same manner as described above, $\mathbf{1 8 b}^{\prime}(27 \mathrm{mg}, 74 \mu \mathrm{~mol})$ was converted to unstable 19a' ($12 \mathrm{mg}, 64 \%$ based on consumed $\mathbf{1 8 b}^{\prime}$) as a pale yellow oil and $\mathbf{1 8 b}^{\prime}(11 \mathrm{mg}, 41 \%)$ was recovered. This oil was employed immediately for the next steps.

($1 S, 2 R, 5 R$)-2-[($\left.2^{\prime} R, 5^{\prime} Z\right)-5^{\prime}$-($2^{\prime \prime}$-Phenylsulfonylethylidene)-tetra-hydropyran-2'-yl]-1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane 19b

To a solution of 19a ($90 \mathrm{mg}, 0.21 \mathrm{mmol}$) in DMF ($2 \mathrm{~cm}^{3}$) was added $\mathrm{PhSO}_{2} \mathrm{Na} \cdot 2 \mathrm{H}_{2} \mathrm{O}(84 \mathrm{mg}, 0.42 \mathrm{mmol})$ at room temperature. After the reaction mixture had been stirred at room temperature for 16 h , water was added to the reaction mixture, and it was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give 19b ($89 \mathrm{mg}, 87 \%$) as a colourless oil, $n_{\mathrm{D}}{ }^{23} 1.5174$ (Found: C, 66.18; $\mathrm{H}, 8.51 . \mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{SSi}$ requires $\left.\mathrm{C}, 66.08 ; \mathrm{H}, 8.63 \%\right) ;[a]_{\mathrm{D}}^{26}+68.6$
(c 1.01 in CHCl_{3}); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1650 \mathrm{w}$ (C=C), 1585 w (Ar), $1445 \mathrm{~m}(\mathrm{Ar}), 1310 \mathrm{~s}\left(\mathrm{SO}_{2}\right), 1250 \mathrm{~s}\left(\mathrm{Si}-\mathrm{CH}_{3}\right), 1150 \mathrm{~s}\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.03,-0.02\left(6 \mathrm{H}\right.$, each s, SiMe_{2}), $0.81(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiBu}^{t}\right), 1.03-1.14\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.26\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.57(1 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.69-1.77\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}_{\mathrm{eq}}\right), 1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\mathrm{CH}_{3}\right)$, $1.78-1.90\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{b}}\right), 2.11(1 \mathrm{H}$, ddd, $J 10.7$, 5.4 and $4.6,5-\mathrm{H}), 2.18-2.27\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.34-2.41(1 \mathrm{H}$, $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.98\left(1 \mathrm{H}\right.$, dd like, $J 8.6$ and $\left.8.6,2^{\prime}-\mathrm{H}\right), 3.36(1 \mathrm{H}, \mathrm{d}$, $\left.J 13.4,6^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.76\left(1 \mathrm{H}, \mathrm{dd}, J 14.3\right.$ and $\left.7.0,2^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 3.86(1 \mathrm{H}$, dd, $J 14.3$ and $\left.9.2,1^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 4.13(1 \mathrm{H}, \mathrm{d}, J 4.6,1-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{d}$, J 13.4, $\left.6^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.68\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 4.77(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH} \mathrm{H}=\mathrm{C}-\mathrm{CH}_{3}\right), 5.24\left(1 \mathrm{H}, \mathrm{dd}, J 9.2\right.$ and $\left.7.0,1^{\prime \prime}-\mathrm{H}\right), 7.56(2 \mathrm{H}$, dd, $J 8.0$ and $7.4, m$-aromatic-H), $7.66(1 \mathrm{H}$, ddd, $J 7.4,7.4$ and 1.2 , p-aromatic-H), $7.85(2 \mathrm{H}, \mathrm{dd}, J 8.0$ and 1.2, o-aromatic-H); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-5.0,-4.1,18.0,23.1,25.8,26.1,26.9$, 31.0, 33.1, 52.1, 53.6, 55.1, 65.8, 75.8, 80.2, 109.1, 111.0, 129.1, 133.7, 138.5, 144.4, 145.0.
(1S,1'S,2R,2' $\left.R, 5 R, 5^{\prime} R\right)-2,2^{\prime}-\left\{5,5^{\prime}-[(R S)-2-P h e n y l s u l f o n y l-~\right.$ butane-1,4-diylidene]bis[(2R,5Z)-tetrahydropyran-2-yl]\}bis[1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane] 20a

To a stirred solution of $\mathbf{1 9 b}(22 \mathrm{mg}, 45 \mu \mathrm{~mol})$ and 18 -crown- 6 (recrystallized MeCN complex; ${ }^{19} 68 \mathrm{mg}, 0.22 \mathrm{mmol}$) in dry THF ($2.0 \mathrm{~cm}^{3}$) was added KHMDS ($0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in toluene; $\left.90 \mathrm{~mm}^{3}, 45 \mu \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ under Ar. After the reaction mixture had been stirred at $-78^{\circ} \mathrm{C}$ for 30 min to give a yellow solution, a solution of 19 a (crude; $12 \mathrm{mg}, 28 \mu \mathrm{~mol}$) in dry THF $\left(0.6 \mathrm{~cm}^{3}\right)$ was added dropwise. After having been stirred at $-78^{\circ} \mathrm{C}$ for 20 min , the resulting solution was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give recovered 19b ($8 \mathrm{mg}, 36 \%$) and 20a ($20 \mathrm{mg}, 84 \%$ based on consumed 19b, 85% based on 19a) as a colourless oil. It was found to be contaminated with ca. 20% of inseparable impurities (checked by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis).
(1S, $\left.1^{\prime} S, 2 R, 2^{\prime} R, 5 R, 5^{\prime} S\right)-2,2^{\prime}-\left\{5,5^{\prime}-[(R S)-2-P h e n y l s u l f o n y l-\right.$ butane-1,4-diylidene]bis[(2R,5Z)-tetrahydropyran-2-yl]\}bis[1-(tert-butyldimethylsilyloxy)-5-(1-methylethenyl)cyclopentane] 20a'

In the same manner as described above, 19b ($32 \mathrm{mg}, 65 \mu \mathrm{~mol}$) and 19a' (crude; $12 \mathrm{mg}, 28 \mu \mathrm{~mol}$) were converted to 20a' (21 $\mathrm{mg}, 78 \%$ based on consumed 19b, 90% based on 19a') as a colourless oil and $\mathbf{1 9 b}(16 \mathrm{mg}, 50 \%)$ was recovered. It was found to be contaminated with ca. 20% of inseparable impurities (checked by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis).

$\left(1 S, 1^{\prime} S, 2 R, 2^{\prime} R, 5 R, 5^{\prime} R\right)-2,2^{\prime}-\left\{5,5^{\prime}\right.$-[Butane-1,4-diylidene]bis[($2 R, 5 Z)$-tetrahydropyran- 2 -yl] bis $[1-$-tert-butyldimethylsilyl-oxy)-5-(1-methylethenyl)cyclopentane] 20b

To a mixture of 20a ($20 \mathrm{mg}, 24 \mu \mathrm{~mol}$) and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(34 \mathrm{mg}$, $0.24 \mathrm{mmol})$ in dry $\mathrm{MeOH}\left(2.0 \mathrm{~cm}^{3}\right)$ was added $5 \% \mathrm{Na}-\mathrm{Hg}$ (ca. 200 mg , excess) with vigorous stirring at $0^{\circ} \mathrm{C}$ under Ar. After having been stirred at room temperature for 26 h , the resulting mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and then filtered through Celite, and the Celite was washed with $\mathrm{Et}_{2} \mathrm{O}$. After the filtrate and the washings had been concentrated under reduced pressure, the residue was chromatographed on SiO_{2} to give recovered 20a ($7 \mathrm{mg}, 35 \%$) and 20b (12 mg , quant. based on consumed 20a) as a colourless oil. It was found to be contaminated with ca. 30% of inseparable impurities (checked by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis). This oil was used in the next reaction without further purification. 20b: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01$, $0.04\left(12 \mathrm{H}\right.$, each s, $\left.2 \times \mathrm{SiMe}_{2}\right), 0.82\left(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiBu}^{t}\right)$, $1.03-1.39\left(4 \mathrm{H}, \mathrm{m}, 5 / 5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.8 / 8^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.51-1.79(4 \mathrm{H}, \mathrm{m}$, $5 / 5^{\prime}-\mathrm{H}_{\text {eq }}$ and $\left.9 / 9^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.76\left(6 \mathrm{H}\right.$, br s, $\left.12 / 12^{\prime}-\mathrm{H}_{3}\right), 1.79-1.97(6 \mathrm{H}$,
m, $7 / 7^{\prime}-\mathrm{H}, 8 / 8^{\prime}-\mathrm{H}_{\mathrm{b}}$ and $9 / 9^{\prime}-\mathrm{H}_{\mathrm{b}}$), 1.97-2.36 ($10 \mathrm{H}, \mathrm{m}, 1 / 1^{\prime}-\mathrm{H}_{2}$, $4 / 4^{\prime}-\mathrm{H}_{2}$ and $\left.10 / 10^{\prime}-\mathrm{H}\right), 3.00-3.10\left(2 \mathrm{H}, \mathrm{m}, 6 / 6^{\prime}-\mathrm{H}\right), 3.69(2 \mathrm{H}, \mathrm{d}$, J 12.7, $15 / 15^{\prime}-\mathrm{H}_{\mathrm{a}}$), $4.22\left(2 \mathrm{H}\right.$, br d, $\left.J 4.6,14 / 14^{\prime}-\mathrm{H}\right), 4.54(2 \mathrm{H}$, d, $\left.J 12.7,15 / 15^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.69\left(2 \mathrm{H}, \mathrm{s}, 13 / 13^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.77(2 \mathrm{H}, \mathrm{s}, 13 /$ $\left.13^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.15\left(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6.3,2 / 2^{\prime}-\mathrm{H}\right)$. The ${ }^{1} \mathrm{H}$-NMR spectrum of this compound was assigned according to the numbering system as illustrated in Fig. 1.

($\left.1 S, 1^{\prime} S, 2 R, 2^{\prime} R, 5 R, 5^{\prime} S\right)$-2,2'- $\mathbf{2}^{\prime}, 5^{\prime}$-[Butane-1,4-diylidene]bis-[(2R,5Z)-tetrahydropyran-2-yl]\}bis[1-(tert-butyldimethylsilyl-

 oxy)-5-(1-methylethenyl)cyclopentane] 20b ${ }^{\prime}$In the same manner as described above, 20a' $(21 \mathrm{mg}, 25 \mu \mathrm{~mol})$ was converted to 20b' (inseparable mixtures; $12 \mathrm{mg}, 91 \%$ based on consumed 20a') as a colourless oil and 20a' ($5 \mathrm{mg}, 24 \%$) was recovered. It was found to be contaminated with ca. 30% of inseparable impurities (checked by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis). This oil was used in the next reaction without further purification. 20b ${ }^{\prime}$ $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01,0.04\left(12 \mathrm{H}\right.$, each s, $\left.2 \times \mathrm{SiMe}_{2}\right), 0.82$, $0.86\left(18 \mathrm{H}\right.$, each s, $\left.2 \times \mathrm{SiBu}^{t}\right), 1.03-1.51\left(5 \mathrm{H}, \mathrm{m}, 5 / 5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right.$, $8 / 8^{\prime}-\mathrm{H}_{\mathrm{a}}$ and $\left.9^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.53-1.95\left(8 \mathrm{H}, \mathrm{m}, 5 / 5^{\prime}-\mathrm{H}_{\mathrm{eq}}, 7-\mathrm{H}, 8 / 8^{\prime}-\mathrm{H}_{\mathrm{b}}\right.$, $9-\mathrm{H}_{\mathrm{a}}$ and $\left.9 / 9^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 1.71\left(3 \mathrm{H}, \mathrm{s}, 12^{\prime}-\mathrm{H}_{3}\right), 1.76\left(3 \mathrm{H}, \mathrm{br}\right.$ s, $\left.12-\mathrm{H}_{3}\right)$, $1.95-2.37\left(10 \mathrm{H}, \mathrm{m}, 1 / 1^{\prime}-\mathrm{H}_{2}, 4 / 4^{\prime}-\mathrm{H}_{2}, 7^{\prime}-\mathrm{H}\right.$ and $\left.10-\mathrm{H}\right), 2.45(1 \mathrm{H}$, dt like, $J 8.0$ and $\left.6.4,10^{\prime}-\mathrm{H}\right), 3.00-3.09(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.31-3.39$ $\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 3.69\left(1 \mathrm{H}, \mathrm{d}, J 12.7,15-\mathrm{H}_{\mathrm{a}}\right), 3.71(1 \mathrm{H}, \mathrm{d}, J 12.7$, $15^{\prime}-\mathrm{H}_{\mathrm{a}}$), $3.97\left(1 \mathrm{H}\right.$, dd, $J 6.4$ and $\left.6.4,14^{\prime}-\mathrm{H}\right), 4.22(1 \mathrm{H}, \mathrm{br}$ d, $J 4.6,14-\mathrm{H}), 4.54\left(1 \mathrm{H}, \mathrm{d}, J 12.7,15-\mathrm{H}_{\mathrm{b}}\right), 4.55(1 \mathrm{H}, \mathrm{d}, J 12.7$, $\left.15^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.69\left(1 \mathrm{H}, \mathrm{s}, 13-\mathrm{H}_{\mathrm{a}}\right), 4.74\left(1 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.77(2 \mathrm{H}, \mathrm{s}$ like, $\left.13 / 13^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.14\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.15(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$. The ${ }^{1} \mathrm{H}$-NMR spectrum of this compound was assigned according to the numbering system as illustrated in Fig. 1.

(1S,1'S,2S,2'S,5R,5'R)-2,2'-\{5,5'-[Butane-1,4-diylidene]bis-[(2R,5Z)-tetrahydropyran-2-yl]\}bis[5-(1-methylethenyl)cyclopentanol] (testudinariol A) 1

To a stirred solution of $\mathbf{2 0 b}$ (inseparable mixture; $12 \mathrm{mg}, 18$ $\mu \mathrm{mol})$ in dry THF ($1.0 \mathrm{~cm}^{3}$) was added TBAF ($1.0 \mathrm{~mol} \mathrm{dm}^{-3}$; $0.40 \mathrm{~cm}^{3}, 0.40 \mathrm{mmol}$) at room temperature under Ar. After having been stirred at room temperature for 20 h , the resulting solution was quenched with water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on spherical SiO_{2} [Silica Gel 60 N (spherical, neutral), $40-50 \mu \mathrm{~m}$, Kanto Chemical Co., Inc.] to give $\mathbf{1}(3.4 \mathrm{mg}, 2$ steps, 47%) as a colourless oil, $[a]_{\mathrm{D}}^{26}+13$ (c 0.17 in CHCl_{3}); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3680 \mathrm{w}(\mathrm{OH}), 1640 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1075 \mathrm{~s}(\mathrm{C}-\mathrm{O})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.15-1.28\left(2 \mathrm{H}, \mathrm{m}, 8 / 8^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.41(2 \mathrm{H}, \mathrm{m}$, $\left.5 / 5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.65-1.92\left(8 \mathrm{H}, \mathrm{m}, 5 / 5^{\prime}-\mathrm{H}_{\mathrm{eq}}, 8 / 8^{\prime}-\mathrm{H}_{\mathrm{b}}\right.$ and $\left.9 / 9^{\prime}-\mathrm{H}_{2}\right), 1.83$ $\left(6 \mathrm{H}, \mathrm{s}, 12 / 12^{\prime}-\mathrm{H}_{3}\right), 1.91-2.03\left(4 \mathrm{H}, \mathrm{m}, 1 / 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.7 / 7^{\prime}-\mathrm{H}\right), 2.03-$ $2.13\left(2 \mathrm{H}, \mathrm{m}, 1 / 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.17-2.27\left(2 \mathrm{H}, \mathrm{m}, 4 / 4^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.27-2.33$ $\left(2 \mathrm{H}, \mathrm{m}, 4 / 4^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.40\left(2 \mathrm{H}\right.$, ddd, $J 11.5,5.8$ and $\left.5.5,10 / 10^{\prime}-\mathrm{H}\right)$, $3.18\left(2 \mathrm{H}\right.$, ddd, $J 10.4,8.5$ and $\left.1.9,6 / 6^{\prime}-\mathrm{H}\right), 3.72(2 \mathrm{H}, \mathrm{d}, J 12.5$, $15 / 15^{\prime}-\mathrm{H}_{\mathrm{a}}$), 4.15-4.20 (2H, m, 14/14'-H), $4.59(2 \mathrm{H}, \mathrm{br}$ d, $J 12.5$, $\left.15 / 15^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.81\left(2 \mathrm{H}, \mathrm{s}, 13 / 13^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.97\left(2 \mathrm{H}, \mathrm{s}, 13 / 13^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.16$ ($2 \mathrm{H}, \mathrm{brt}, J 5.8,2 / 2^{\prime}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 23.3, 26.7, 27.1, $27.3,32.0,33.0,52.0,53.1,66.7,74.8,80.7,112.2,123.4,134.2$, 144.4; m/z (EI) 470 (25%) $\left[\mathrm{M}^{+}\right], 452$ (36), 442 (3), 434 (12), 424 (4), 370 (7), 343 (16), 327 (22), 300 (13), 234 (28), 219 (28) [Found: (HREI-MS) $470.3400 \quad\left[\mathrm{M}^{+}\right] . \quad \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{4}$ requires 470.3396]. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of this compound was assigned according to the numbering system as illustrated in Fig. 1.

($\left.1 S, 1^{\prime} S, 2 S, 2^{\prime} S, 5 R, 5^{\prime} S\right)$-2,2'- $\mathbf{2}^{\prime}, 5^{\prime}$-[Butane-1,4-diylidene]bis-[(2R,5Z)-tetrahydropyran-2-yl] \}bis[5-(1-methylethenyl)cyclopentanol] (testudinariol B) $\mathbf{1}^{\prime}$

In the same manner as described above, 20b' (inseparable mixture; $12 \mathrm{mg}, 18 \mu \mathrm{~mol}$) was converted to $\mathbf{1}^{\prime}(3.2 \mathrm{mg}, 2$ steps, 36%)
as a colourless oil, $[a]_{\mathrm{D}}^{25}+19\left(c 0.16\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3525 \mathrm{w}(\mathrm{OH}), 1645 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1075 \mathrm{~s}(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.15-1.28\left(2 \mathrm{H}, \mathrm{m}, 8 / 8^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.39\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{\mathrm{ax}}\right), 1.41(1 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{H}_{\mathrm{ax}}\right), 1.50\left(1 \mathrm{H}, \mathrm{m}, 9^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 1.65-1.92\left(8 \mathrm{H}, \mathrm{m}, 5 / 5^{\prime}-\mathrm{H}_{\mathrm{eq}}, 7^{\prime}-\mathrm{H}\right.$, $8 / 8^{\prime}-\mathrm{H}_{\mathrm{b}}, 9-\mathrm{H}_{\mathrm{a}}$ and $\left.9 / 9^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, 12^{\prime}-\mathrm{H}_{3}\right), 1.83(3 \mathrm{H}, \mathrm{s}$, $\left.12-\mathrm{H}_{3}\right), 1.91-2.03\left(3 \mathrm{H}, \mathrm{m}, 1 / 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.7-\mathrm{H}\right), 2.03-2.13(2 \mathrm{H}, \mathrm{m}$, $\left.1 / 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.17-2.33\left(4 \mathrm{H}, \mathrm{m}, 4 / 4^{\prime}-\mathrm{H}_{2}\right), 2.40(1 \mathrm{H}, \mathrm{ddd}, J 11.5,5.8$ and $5.5,10-\mathrm{H}), 2.47\left(1 \mathrm{H}, \mathrm{dt}, J 9.5\right.$ and $\left.9.5,10^{\prime}-\mathrm{H}\right), 3.18(1 \mathrm{H}$, ddd, $J 10.4,8.5$ and $1.9,6-\mathrm{H}), 3.35(1 \mathrm{H}$, ddd, $J 11.0,9.2$ and 1.9 , $\left.6^{\prime}-\mathrm{H}\right), 3.72\left(1 \mathrm{H}, \mathrm{d}, J 12.5,15-\mathrm{H}_{\mathrm{a}}\right), 3.76\left(1 \mathrm{H}, \mathrm{d}, J 12.5,15^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$, $3.85\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.8.8,14^{\prime}-\mathrm{H}\right), 4.15-4.20(1 \mathrm{H}, \mathrm{m}, 14-\mathrm{H})$, $4.59\left(2 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 12.5,15 / 15^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.80\left(1 \mathrm{H}\right.$, br s, $\left.13^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.82$ $\left(1 \mathrm{H}, \mathrm{s}, 13-\mathrm{H}_{\mathrm{a}}\right), 4.87\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 13^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.97\left(1 \mathrm{H}, \mathrm{s}, 13-\mathrm{H}_{\mathrm{b}}\right), 5.17$ ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), $5.18\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.2$, 23.3, 23.7, 26.6, 26.7, 27.1, 27.2, 27.3, 32.0, 32.6, 32.7, 33.0, $50.9,52.0,53.06,53.14,66.62,66.64,74.8,80.1,80.7,83.9$, 110.4, 112.2, 123.3, 123.8, 133.8, 134.3, 144.4, 145.9; m/z (EI) $470(15 \%)\left[\mathrm{M}^{+}\right], 452$ (21), 442 (2), 434 (7), 424 (3), 370 (6), 343 (11), 327 (14), 300 (11), 234 (39), 219 (18) [Found: (HREI-MS) $470.3409\left[\mathrm{M}^{+}\right] . \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{4}$ requires 470.3396]. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of this compound was assigned according to the numbering system as illustrated in Fig. 1.

Acknowledgements

We thank Professor G. Cimino (Istituto per la Chimica di Molecole di Interesse Biologico, Napoli, Italy) for sending us the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1}$ prior to publication. We acknowledge financial support by the Ministry of Education, Science, Sports and Culture, Japan.

References

1 Part 5. D. Nozawa, H. Takikawa and K. Mori, J. Chem. Soc., Perkin Trans. 1, 2000, 2043.
2 A. Spinella, E. Mollo, E. Trivellone and G. Cimino, Tetrahedron, 1997, 53, 16891.
3 K. F. Albizati, J. R. Pawlik and D. J. Faulkner, J. Org. Chem., 1985, 50, 3428.
4 F. S. De Guzman and F. J. Schmitz, J. Org. Chem., 1991, 56, 55. The proposed structure for naurol A was disproved by our synthesis. ${ }^{1}$
5 (a) K. Mori, H. Takikawa, M. Kido, K. F. Albizati and D. J. Faulkner, Nat. Prod. Lett., 1992, 1, 59; (b) K. Mori, H. Takikawa and M. Kido, J. Chem. Soc., Perkin Trans. 1, 1993, 169.
6 H. Takikawa, M. Yoshida and K. Mori, Tetrahedron Lett., 2001, 42, 1527.

7 A. H. McNeill and E. J. Thomas, Tetrahedron Lett., 1993, 34, 1669.

8 N. Nakajima, K. Horita, R. Abe and O. Yonemitsu, Tetrahedron Lett., 1988, 29, 4139.
9 M. Kodama, Y. Shiobara, H. Sumitomo, K. Fukuzumi, H. Minami and Y. Miyamoto, J. Org. Chem., 1988, 53, 1437.
10 (a) Y. Horiguchi, E. Nakamura and I. Kuwajima, J. Am. Chem. Soc., 1989, 111, 6257; (b) B. B. Snider, D. J. Rodini, M. Karras, T. C. Kirk, E. A. Deutsch, R. Cordova and R. T. Price, Tetrahedron, 1981, 37, 3927.

11 K. Mikami, T.-P. Loh and T. Nakai, J. Am. Chem. Soc., 1990, 112, 6737.

12 Y. Oikawa, T. Yoshioka and O. Yonemitsu, Tetrahedron Lett., 1982, 23, 885.
13 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155.
14 K. Tanaka, Y. Ohta and K. Fuji, Tetrahedron Lett., 1993, 34, 4071.

15 D. A. Evans, P. H. Carter, E. M. Carreira, A. B. Charette, J. A. Prunet and M. Lautens, J. Am. Chem. Soc., 1999, 121, 7540.
16 (a) W. C. Still and C. Gennari, Tetrahedron Lett., 1983, 24, 4405; (b) P. L. L. Tudanca, K. Jones and P. Brownbridge, J. Chem. Soc., Perkin Trans. 1, 1992, 533.
17 K. Ando, J. Org. Chem., 1997, 62, 1934.
18 A. Yanagisawa, H. Hibino, S. Habaue, Y. Hisada and H. Yamamoto, Bull. Chem. Soc. Jpn., 1995, 68, 1263 and other references cited therein.
19 G. W. Gokel and D. J. Cram, J. Org. Chem., 1974, 39, 2445.

